Case Study: Hard Drives

Dr. Tarek A. Tutunji
Advanced Modeling and Simulation
Mechatronics Engineering Department
Philadelphia University, Jordan
2013
General Structure

- Spindle motor
- Disk
- Magnetic head
- Voice coil motor (VCM)
Hard Disc Drives: HDD

- Hard disc drives are the main storage units in
 - Personal Computers
 - Network Storage Systems
 - Enterprise Workstations
 - DVD Players
 - Game Boxes
Hard Disk Design

- The Hard Disk Design include
 - Electronic Parts
 - Mechanical Parts
- The Mechanical Parts are used to
 - Magnetically Store the data
 - Rotate the disks and move the arm
- The Electronic Parts are used to
 - Control the mechanical movement
 - Transfer Data between the Disks and the Host
- Hard Disks are a good example of Mechatronic Systems
The Mechanical parts are all assembled in a sealed chamber referred to as Head Disk Assembly (HDA).

The HDA includes:
- Platters or Discs
- Spindle Motor
- Actuator Arm
- Voice Coil Motor
- Read/Write Heads
Mechanical: Platters or Discs

- Made of aluminum alloy coated with a magnetic medium
- Stores the data in magnetic patterns
- Each Platter (Disc) is divided into tracks
 - The tracks have circular shapes around the center spindle and are grouped into cylinders
 - The cylinders are divided into sectors of 512 bytes each

Servo Information (stored between data sectors) is used for positioning
The discs are stacked on top of each other through a shaft
The Motor Spindle turns the whole assembly
Magnetic read/write heads are mounted on the end of an Actuator Arm that flies at each side of the platters
The Voice Coil Motor moves the actuator arm
Electronics

• The Electronic parts are assembled on a Printed Circuit Board (PCB)
 ○ Supervises the data transfer
 ○ Encodes / Decodes the stored data pattern
 ○ Converts D/A and A/D
 ○ Digital Filtering of Data
 ○ Controls the Spindle Motor Driver
 ○ Moves the Arm
Controller Tasks

- Head seeking and tracking
- Spindle / spin
- Arm position
- Shock/vibration control
Head Positioning Servo Mechanism
Closed Loop Control
Rotary VCM

- Track
- Sectors
- Pivot
- Head Slider
- Actuator

- Suspension
- Pivot
- Actuator Arm
- Coil

- Pivot
- Part of actuator arm
- Coil

- B
- F
- I
Servo mechanism

Figure 2.5: Movement of suspension arm for rotary VCM.

Figure 2.6: Micro-jog in HDD servomechanism.
Actuator Arm Modeling

The motion of the actuator arm, defined according to the Newton's second law of motion, can be modeled as

$$\ddot{\theta}(t) = \frac{K_t}{J} I(t)$$

where \(J \) is the moment of inertia of the rotating arm, and \(\ddot{\theta} \) is the angular acceleration of the actuator's motion. If the distance between the pivot center and the read head is \(L \) inches, then the linear displacement of the read head corresponding to an angular displacement \(\theta \) is \(x = L\theta \). It is very common in the HDD industry to express the displacement of read head in units of track, i.e., \(y = D_{trk} L\theta \), where \(D_{trk} \) is the track density in units of Tracks per Inch (TPI). Taking all these factors into consideration, the rigid body dynamics of the VCM actuator is given by

$$\ddot{y}(t) = \frac{D_{trk} LK_t}{J} I(t) = KI(t)$$

The corresponding transfer function model is \(G_v(s) = \frac{K}{s^2} \)
Circuit Modeling

\[V_O(t) = R_v I(t) + L_v \frac{dI(t)}{dt} \]

\[\frac{I(s)}{U(s)} = \frac{K_{VA}}{L_v s + R_v} \]

\[G_{v,v} = \frac{Y(s)}{U(s)} = \frac{KK_{VA}}{s^2(L_v s + R_v)} \]

\[G_{v,c} = \frac{Y(s)}{U(s)} = \frac{KK_{CA}}{s^2} \]
HDD Modeling

- A HDD consists of a voice coil motor (VCM), several magnetic heads, several disks, and a spindle motor.

- The mathematical model of the mechanical system $P_m(s)$ is given by the following equation, where I is the number of modes under consideration.

$$P_m(s) = K_p \sum_{i=1}^{I} \frac{\alpha_m(i)}{s^2 + 2\zeta_m(i)\omega_m(i)s + \omega_m(i)^2}.$$
HDD Modeling

The transfer function of the HDD servomechanism plant can be described by the model [113]:

\[
G_p(s) = k P_d [P_0 + P_m],
= k \frac{e^{-T_d s}}{T_{amp} s + 1} \left[\frac{r_0}{(s^2 + 2\zeta_{m0}\omega_{m0}s + \omega_{m0}^2)} + \sum_{i=1}^{N_a} \frac{r_{mi}}{(s^2 + 2\zeta_{mi}\omega_{mi}s + \omega_{mi}^2)} \right],
\]

(3.5)

where the loop gain \(k \) includes gains of various stages of the servo plant e.g. the DAC (Digital-to-Analog Converter) gain*, amplifier gain, torque gain, mass and position gain. The transfer function \(P_d(s) = \frac{1}{T_{amp} s + 1} e^{-T_d s} \) represents both the dynamics of power amplifier with time constant \(T_{amp} \) and the computational delay \(T_d \). The rigid body model of the actuator coupled with linearized pivot friction is modeled as \(P_0(s) \), where as \(P_m(s) = \sum_{i=1}^{N_a} \frac{r_{mi}}{s^2 + 2\zeta_{mi}\omega_{mi}s + \omega_{mi}^2} \) represents \(N_a \) modes of mechanical resonances.
Frequency Response
These methods find the coefficients of the transfer function $G(s) = \frac{B(s)}{A(s)}$ such that the frequency response of the identified transfer function matches as close as possible to the frequency response obtained experimentally. The frequency response data include two vectors:

1. the vector $[\omega_k]$ for $k = 1, \cdots, N$ contains all frequencies for which magnitudes and phases are measured and

2. the vector $[G_{fr}(\omega_k)]$ contains the frequency response measured at each of the N frequencies.
Identification

The transfer function model $G(s)$ is the ratio of two polynomials of Laplace Transform parameter s,

$$G(s) = \frac{B(s)}{A(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \cdots + b_m}{s^n + a_1 s^{n-1} + \cdots + a_n},$$

the response at any frequency ω_k is

$$\frac{b_0 (j\omega_k)^m + b_1 (j\omega_k)^{m-1} + \cdots + b_m}{(j\omega_k)^n + a_1 (j\omega_k)^{n-1} + \cdots + a_n} = G_{fr}(\omega_k).$$

The parameters of the transfer function G can be obtained by solving the least squares estimation problem that minimizes the error criterion

$$\sum_{k=1}^{N} \left| \frac{B(j\omega_k)}{A(j\omega_k)} - G_{fr}(\omega_k) \right|^2.$$
Identification

\[
\frac{b_0(j\omega_k)^m + b_1(j\omega_k)^{m-1} + \cdots + b_m}{(j\omega_k)^n + a_1(j\omega_k)^{n-1} + \cdots + a_n} = G_{fr}(\omega_k).
\]

\[
b_0(j\omega_k)^m + b_1(j\omega_k)^{m-1} + \cdots + b_m = G_{fr}(\omega_k) \left((j\omega_k)^n + a_1(j\omega_k)^{n-1} + \cdots + a_n \right)
\]

\[
b_0(j\omega_k)^m + \cdots + b_m - G_{fr}(\omega_k) \left(a_1(j\omega_k)^{n-1} + \cdots + a_n \right) = (j\omega_k)^n G_{fr}(\omega_k)
\]

\[
\phi^T(j\omega_k) \begin{bmatrix} b_0 & b_1 & \cdots & b_m & a_1 & a_2 & \cdots & a_n \end{bmatrix} = x(\omega_k) + jy(\omega_k)
\]

\[
x(\omega_k) + jy(\omega_k) = (j\omega_k)^n G_{fr}(\omega_k)
\]

\[
\phi(j\omega_k) = \\
\begin{bmatrix} (j\omega_k)^m & (j\omega_k)^{m-1} & \cdots & 1 & -G_{fr}(\omega_k)d_1(j\omega_k)^{n-1} & \cdots & -G_{fr}(\omega_k)d_n \end{bmatrix}^T
\]
Identification

\[
\begin{bmatrix}
\phi_R^T(\omega_k) \\
\phi_I^T(\omega_k)
\end{bmatrix}
\cdot \theta = \begin{bmatrix}
x(\omega_k) \\
y(\omega_k)
\end{bmatrix}, \quad \theta = [b_0 \ b_1 \ \cdots \ b_m \ a_1 \ a_2 \ \cdots \ a_n]^T
\]

The frequency response is measured for \(N \) different frequencies, and we get \(N \) sets of the above equation. That is,

\[
\Phi_{2N \times np} \Theta_{np \times 1} = Y_{2N \times 1}
\]

where \(np \) is the number of parameters to be identified. This is a linear in the parameters (LIP) model and can be solved using linear least-squares method, i.e., to find the estimate \(\hat{\Theta} \) of the parameter vector by minimizing the cost function,

\[
J_{LS} = (Y - \Phi \hat{\Theta})^T (Y - \Phi \hat{\Theta})
\]

Solution of this least squares problem is,

\[
\hat{\Theta} = (\Phi^T \Phi)^{-1} \Phi^T Y.
\]
State Estimator

Considering the rigid body model \(\left(\frac{a}{s^2} \right) \) of the VCM actuator, corresponding continuous-time state space model is

\[
\frac{dp}{dt} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} p + \begin{bmatrix} 0 \\ a \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} p,
\]

state vector \(p = [p_1 \ p_2]^T \) includes the position \((p_1) \) and velocity \((p_2) \)

the transformed state equation is,

\[
\frac{dx}{dt} = \begin{bmatrix} 0 & \frac{1}{T_s} \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ aT_s \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x,
\]

Corresponding discrete-time state space model is

\[
x(k+1) = \Phi x(k) + \Gamma u(k),
\]

\[
y(k) = H x(k).
\]
State Estimator

\[
\begin{bmatrix}
 x(k+1) \\
 w(k+1)
\end{bmatrix}
= \begin{bmatrix}
 \Phi & \Gamma \\
 0 & 0
\end{bmatrix}
\begin{bmatrix}
 x(k) \\
 w(k)
\end{bmatrix}
+ \begin{bmatrix}
 \Gamma \\
 0
\end{bmatrix} u(k)
\]

\begin{equation}
y(k) = \begin{bmatrix}
 H \\
 0
\end{bmatrix}
\begin{bmatrix}
 x(k) \\
 w(k)
\end{bmatrix}
\end{equation}

or

\[
z(k+1) = \Phi_a z(k) + \Gamma_a u(k); \quad y(k) = H_a z(k).
\]

Here \(z = [x^T \ w]^T \) is the augmented state vector, \(\Phi_a = \begin{bmatrix}
 \Phi & \Gamma \\
 0 & 0
\end{bmatrix} \), \(\Gamma_a = \begin{bmatrix}
 \Gamma \\
 0
\end{bmatrix} \), and \(H_a = [H \ 0] \). The prediction observer using this model is

\[
\ddot{z}(k+1) = \Phi_a \ddot{z}(k) + \Gamma_a u(k) + L_p[y(k) - H_a \ddot{z}(k)],
\]
Proximate Time Optimal Servomechanism

Figure 2.32: Schematic diagram of PTOS with integral control.

Figure 2.33: Schematic diagram of PTOS with bias estimator.
References

- Hard Disc Drive: Mechatronics and Control (Chapter 1, 2, and 3)
 - Al Mamun, Guo, and Bi