PROJECT DEVELOPMENT AND APPLICATION WRITING FOR EUROPEAID

Roberto Escarré
Virjinia Ferrer
University of Alicante
Index – Project Cycle Management

• PCM Concepts and Terminology
• The ‘four’ phases
 – Identification
 – Formulation or conceptualisation
 – Implementation
 – Evaluation and monitoring
Why PCM?

• Standard project management and development approach
• Used in most project organisations (World Bank, EC)
• Adopted by EC in 1993 as official management approach, a **must** for anyone who works with the EC funding
• Most logical and organised methodology available
What is a project?

• A series of activities aimed at bringing about clearly specified objectives within a defined time period and with a defined budget (*EC PCM Guidelines*)

• Clearly defined **Tasks**

• For a specific **Purpose**

• Within a certain **Timescale**

• And with limited **Resources**
Other Concepts to understand..

- A project is temporary by its very nature
- Has renewal possibilities at various stages
- “Old” project life cycle
The “new” project lifecycle

• Cyclical Management - no end point foreseen
Project (Cycle) Management

• Use of a cyclical four-step approach to get your objectives and purpose fulfilled

• Researching, conceptualising, carrying out and evaluating a project

• Describes management and decision-making activities which are used before, during and after a project

• The Logical Framework Approach (LFA)
4 phases of PCM

• 1) Identifying
• 2) Formulating
• 3) Implementing
• 4) Evaluating

• THINK
• PLAN
• DO
• REVIEW
Before you start….

• Think about your project timescale (1yr, 2 yrs)
• Set your resource limits
• Remember the balance between tradeoffs
 – Time constraints
 – Resource constraints (human, financial)
 – Project scope constraints
• Do not try to change the world!
Tradeoff Triangle

- **SCOPE**
- **QUALITY**
- **TIME**
- **COST**

TIES Project is co-financed by the European Commission on the framework of the TEMPUS Programme.
Contract: 159218-TEMPUS-1-2009-1-ES-TEMPUS-JPGR
1) Identification (THINK)

Problem identification and needs analysis

• Knowing what you **should do**
• Self-evaluation (Skills, strengths, core competences, knowledge gaps)
• Knowing what you **can do**
• Stakeholder / partner analysis
• Knowing **WHO** you are doing it with and **WHO** for
• State of the art
• Knowing **WHAT** has already been done
Why an identification phase?

• Projects should be based on real needs
• Should seek to be innovative to create added value
• Seek synergies between what you can do and other organisations / projects
• Not “re-inventing the wheel” actually means saving time in the long run!
• Identification provides basis for all other decisions - “informed choices”
Problem identification and needs analysis

• Research: Secondary and Primary
 – in that order!

• Use your knowledge
 – What do you already know about the topic?

• Use diagrams to get your thoughts in order
 – We remember / organise better visually!
A problem tree
TIES Project is co-financed by the European Commission on the framework of the TEMPUS Programme. Contract: 159218-TEMPUS-1-2009-1-ES-TEMPUS-JPGR

Regional labour market demands for tourism professionals are met

Graduates find employment

Universities are able to deliver modern and market relevant study programmes in tourism

Data on concrete industry needs is available

Bologna-compatible & up-to-date curricula developed

Teaching staff is able to apply modern pedagogical methods

Up-dated teaching materials/equipment

Means

Ends
Self-evaluation

• What are we good at?
• What can we do that we could apply to this problem?
 – Where do we lack knowledge / skills?
 – What complementarity do we seek?
• What do we know about it?
• What can we offer additional to what is being done?
Stakeholder Analysis

• A tool to examine different levels of interest, benefit and importance of a subject to different stakeholders

• Stakeholders - anyone/thing who potentially has an interest in a project or is affected by its outcomes

• Different stakeholders: end users, beneficiaries, interest groups, clients, internal stakeholders, potential partners.....
Benefits of stakeholder analysis

• Opinions of stakeholders shape your project = enhanced quality, added value, applicability and impact

• Support from powerful stakeholders = more resources

• Involvement promotes active support when you may need it later
Stakeholder Power/Interest Matrix

- Plot on the PI Matrix to show who we should be managing and how.

<table>
<thead>
<tr>
<th>POWER</th>
<th>INTEREST</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>KEEP INFORMED</td>
</tr>
<tr>
<td></td>
<td>KEEP SATISFIED</td>
</tr>
<tr>
<td>Low</td>
<td>MONITOR (Min. effort)</td>
</tr>
<tr>
<td></td>
<td>MANAGE CLOSELY</td>
</tr>
</tbody>
</table>

TIES Project is co-financed by the European Commission on the framework of the TEMPUS Programme.
Contract: 159218-TEMPUS-1-2009-1-ES-TEMPUS-JPGR
Explanation

• High power, interested people: these are the people you must fully engage and make the greatest efforts to satisfy

• High power, less interested people: put enough work in with this group to keep them satisfied, but not so much that they become bored with your message
Explanation (cont)

• Low power, interested people: keep them adequately informed, talk to them to ensure no major issues arising. This group are often helpful with the details of your project, and are probably your beneficiaries

• Low power, less interested people: again, monitor these people but do not bore them with excessive communication
EC Stakeholder Analysis

<table>
<thead>
<tr>
<th>Stakeholder and basic characteristics</th>
<th>Interest and how affected by the issue</th>
<th>Capacity and motivation to bring about change</th>
<th>Possible actions to address stakeholder interests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholder 1</td>
<td>Level of interest and immediate causal effects</td>
<td>Power</td>
<td>Communication strategy plus contingent issues</td>
</tr>
<tr>
<td>Stakeholder 2</td>
<td>etc</td>
<td>etc</td>
<td>etc</td>
</tr>
<tr>
<td>Stakeholder 3</td>
<td>etc</td>
<td>etc</td>
<td>etc</td>
</tr>
</tbody>
</table>
State of the Art

• Term used (mainly in reference to technology but in projects we use it more broadly) to describe the most recent developments.
• Mainly gathered through our research and contacts (stakeholders).
• Used to define gaps in knowledge, reach.
• Look for other projects in the field and try to gain access to their outcomes.
What now?

• We have already identified:
 – Core problems
 – Our own competences and values
 – Stakeholders
 – What has already been done

• Using this information, we can determine which areas to focus on!

• You are ready to start writing.....
2) Formulation - PLAN

• Brainstorming
• Logical Framework Matrix (to be covered in more detail later)
• Structuring a proposal
 – Needs analysis, objectives, activities, outputs, indicators and resources, potential impact, project management
Exercise (1)

• Propose a small project related with the internationalisation of your institution:
 – Main problem identified:
 – Project overall objective:
 – Project specific objectives:
Logical Framework Matrix

• Visual tool
• Provides logical links between all aspects of a project
• Is the primary tool to be able to see all aspects of a project at a glance
• Analytical, coherent, project design tool
• To be explained in full detail later
LFM Structure

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Indicators</th>
<th>Sources of verification</th>
<th>Assumptions and risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purpose OR specific objs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results / outputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Needs Analysis

• We have our problem tree already made
• Use it to create a short description on what issue we try to solve
• Research statistics, policies and relevant references wherever possible
• Show you understand the issue at stake
• Treat it as an academic exercise (you can use it later too!)
Objectives are

• The defining concept of a project
• They tell us what we have to do
• Two types
 – Overall objective
 • Link the action to a specific problem and, where possible, to funding and policies
 – Specific objectives
 • Define the scope of the project
However...

- Project objectives should be
 Specific
 Measurable
 Achievable
 Realistic
 Timebound

Try to incorporate each of these elements into your objective formulation!
Activities

• Our small stepping stones to a larger objective
• Can be broken down into tasks and sub-tasks
• We must bear in mind the tradeoff triangle!
One useful trick

• Try referencing activities coherently to break them down

• E.g. Activity 1: Training course for UA
 – Task 1.1 Create training materials
 – Task 1.2 Construct practical exercises
 – Task 1.3 Impart the training course
 – Task 1.4 Receive feedback
To determine our activities

- Think about self evaluation - Think about what we can do and who we can get on-board
- Be innovative in your approach / design
- Think about target group and how they may prefer to be addressed
- Be logical in your planning - know that activities can be staggered and may have interdependencies in some cases
- Think about more cost-effective and environment friendly approaches
Objective - Activity Relation

SPECIFIC OBJECTIVE 1

SPECIFIC OBJECTIVE 2

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

TASK 1.1

TASK 1.2

TASK 1.3

TASK 2

TASK 3

OVERALL OBJECTIVE
Outputs (deliverables)

- Outputs can be:
 - TANGIBLE - see it, touch it, read it, change it
 - INTANGIBLE - feel it as an effect

- For example, this training course:
 - Tangible: your LFM, my slides and handouts
 - Intangible: your (hopefully!) increased knowledge and understanding of PCM

However, both types should be as measurable as possible!!
Types of outputs

• TANGIBLE
 – Publications, articles
 – Training materials
 – Conference materials
 – Handbooks, guides
 – Networks
 – Promo campaign
 – Recommendation reports
 – Analyses (e.g. Benchmarking)

• INTANGIBLE
 – Skills
 – Knowledge
 – Capacities
 – Improvement in policies, working methods
 – Strategic thinking
 – Institutional change
 – Awareness
Activity - Output relation

ACTIVITY 1
- TASK 1.1
- OUTPUT 1.1a
- OUTPUT 1.1b

ACTIVITY 2
- TASK 1.2
- OUTPUT 1.2a

TASK 2.1
Exercise (2)

• Continue your project by adding:
 – List of activities
 – List of outputs
Indicators

• Go back to SMART principles
• Here we add in the **measurable** factor
• Indicators are quantifiable measurements, agreed **before** a project commences
• **Quality, quantity, time**
• Our logical framework will contain Indicators for our project objectives, outputs, etc
Example....

<table>
<thead>
<tr>
<th>Overall objective: To contribute to the EC’s policy of innovation support mechanisms for European SMEs</th>
<th>Indicators: provision of a small-scale support mechanism as a pilot action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Objective 1: To raise awareness of intellectual property issues for European SMEs through the provision of support and information services (Helpline and toolkit)</td>
<td>Indicators: 1.1 increase in SMEs registering for patents or other IP 1.2 number of downloads by SMEs of the toolkit after a promo drive</td>
</tr>
<tr>
<td>Output: 1. Handbook for IP usage in Framework Programme Projects</td>
<td>Indicators 1.1 Handbook created by 06/08 1.2 Number of copies distributed 1.3 Increase in queries to helpline coming from handbook recipients</td>
</tr>
</tbody>
</table>
Exercise (3)

• List some ideas for indicators for your
 – Project overall objective
 – Project specific objectives
 – Outputs / results
Verification of Indicators

• Indicators must be accompanied by the means to
 – Collect the data
 – Within a specific date or timeframe
 – By a certain responsible person

Going back to my example.....
<table>
<thead>
<tr>
<th>Overall Obj: to contribute to the policy of innovation support mechanism for SMEs</th>
<th>Indicator: provision of a small-scale support mechanism as a pilot action</th>
<th>Source of Verification: Mechanism in place by UA by 01/08 - visible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Obj: To raise awareness of IP and related issues for SMEs through the provision of support services (Helpline and toolkit)</td>
<td>Indicator: 1.1 increase in SMEs registering IP 1.2 No of downloads by SMEs of the toolkit after the promo drive</td>
<td>Source of Verification: 1.1 Info on registrations, EC annual reports on innovation in Europe, EPO / OHIM stats 1.2 Project web stats, user survey results, links to promo</td>
</tr>
<tr>
<td>Output: 1. Handbook on IP usage in Framework Programme Projects</td>
<td>Indicator: 1.1 handbook created by 06/08 1.2 No of copies distributed 1.3 Increase in queries</td>
<td>Source of Verification: 1.1 master copy dated 1.2 Mailing lists 1.3 Helpline data cross referenced with mailing lists, summary report</td>
</tr>
</tbody>
</table>
Resources

• Think back to tradeoff triangle

• FINANCIAL
 – Available funding, sources of funding

• HUMAN
 – Member of staff, profiles, knowledge

• PHYSICAL AND INTELLECTUAL
 – Facilities, documents, publications, previous studies, projects or outputs
Potential Impact and Sustainability

• How does our project contribute to the overall goal?
• How does it contribute to any intended policy reform or other factors?
• What knock-on or multiplier effects can be expected through our activities?
• How can it be made sustainable after the action ends?
Project Timetable

• A visual representation of the project timetable is a useful tool and helpful to keep us on track
• GANTT charts show the sequence of activities in order
• You should also chart dates of outputs, deliverables to have a clear indication of deadlines
• Bear in mind **interdependencies**
 – The theory that some activities may only begin once another is completed, some may run in parallel
Typical GANTT Chart
Project Management

• Management Structures

• “Scientific” coordination
 – Results-based and objective-oriented management
 – Concerned with getting things done on time, on task and on target

• “Administrative” coordination
 – Resource-based management
 – Concerned with being on-budget and complying with procedures
Sample PM Structure

- SC
- AC
- TASK MANAGER
- TASK MANAGER
- TASK MANAGER
- PARTNERS / STAKEHOLDERS

TIES Project is co-financed by the European Commission on the framework of the TEMPUS Programme. Contract: 159218-TEMPUS-1-2009-1-ES-TEMPUS-JPGR
Use of external parties

• Advisory groups
 – Provide an un-biased opinion of project progress
 – Should be taken from your stakeholder list
 – Informed about project outputs
 – Consulted at project end to determine where our next projects could be improved
LFM

• Visual tool
• Provides logical linkages between all aspects of the proposal and project
• Is the primary tool to see the whole concept “at-a-glance”
• Analytical, coherent, project-design tool
<table>
<thead>
<tr>
<th>Project Description</th>
<th>Indicators</th>
<th>Sources of Verification</th>
<th>Assumptions and risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Objectives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results / Outputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 schools of thought - when to prepare a LFM

• Complete it as you go along, brainstorming all sections
 —GOOD: because you can constantly rethink and evaluate as you write
 —BAD: you have to spend a lot of time re-working the matrix

• Design the whole project then fill in the LFM with the results gathered
 —GOOD: because you can use diagrams etc we have learned
 —BAD: you might not see the whole picture until the LFM is filled in, so may require some changes
Vertical Logic

- What we intend to do
- Specific causal relationships
- Attends to assumptions and uncertainties
Horizontal Logic

• Measurement and effects
• Application of resources vs. Outputs
• Tradeoffs and successes
Order of completion

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Indicators</th>
<th>Sources of verification</th>
<th>Assumptions and risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>16</td>
<td>5</td>
</tr>
</tbody>
</table>
Thank you