

Philadelphia University Faculty of Engineering Department of Computer First semester, 2009/2010

Course Syllabus

Course Title: Logic Circuits	Course code: 630261
Course Level: 2 nd year	Course prerequisite (s) and/or corequisite (s): 710101
Lecture Time: 12:10 – 13:00	Credit hours: 3

		Academic Staff]			
		Specifics				
Name Rar	Donk	Office Number and	Office	E mail Addusss		
	Капк	Location	Hours	E-man Address		
Dr. Ali Khwaldal	Ali Khwaldal		9-10 Mon.	akhwaldah@nhiladalnhia adu i		
DI. All Kliwaluel	Professor	E710	10-11 Wed	aknwaiden@pilladeipilla.edd		

Course module description:

This class is an introduction to the basic concepts, analysis, and design of digital systems. This consists of both combinational and sequential logic. Lectures will enable students to experience with several levels of digital systems.

Course module objectives:

At Completing of this module the student should be able to:

- Design methodologies for electronic circuits, to use mathematical expressions to describe the functions of simple combinational and sequential circuits.
- Convert numerical data from one format to another and to use different formats to represent numerical data.
- Understand Boolean algebra, basic laws and rules in logic design, DeMorgan's theorem, Karnaugh map, and approaches to simplifying logic circuits.
- Understand systematical design methodology for combinational logic circuits and build this kind of digital systems by using some IC devices.
- Understand systematical design methodology for sequential logic circuits.

Course/ module components

• Books (title, author (s), publisher, year of publication)

(Text Book) Digital Design, 4th Edition, M. Morris Mano and Michael D. Ciletti, Prentice Hall, 2007.

- Support material (s) (Course website: Includes reference books and Course Notes_ Power Point Slides). <u>http://lbadri.com/index.php?option=com_content&task=view&id=29&Itemid=33</u>
- Study guide (s)
- Homework and laboratory guide (s): Listed in the Course website.

Teaching methods:

Lectures, tutorials, and problem solving.

Learning outcomes:

- Knowledge and understanding
 - Ability to analyze and understand the behavior of combinational and sequential digital circuits.
 - Ability to map and minimize Boolean functions as well as represent them in various standard forms.
 - Ability to design and implement combinational and sequential logic circuits.
 - Understanding of various combinational "building blocks" such as decoders, multiplexers, and encoders.
 - Ability to design and implement arithmetic logic circuits.
 - Understanding of the behavior exhibited by latches and flip-flops.
 - Ability to design and implement sequential circuits.
 - Understanding of various sequential "building blocks" such as counters and shift registers
- Cognitive skills (thinking and analysis)
 - Ability to analyze the behavior of digital circuits.
 - Ability to design and implement combinational logic circuits.
 - Understanding of various combinational "building blocks" such as decoders, multiplexers, and encoders.
 - Ability to design and implement arithmetic logic circuits.
 - Ability to design and implement sequential circuits.
 - Understanding of various sequential "building blocks" such as counters and shift registers.
- Communication skills (personal and academic).
 - Ability to search appropriate literature and other scientific resources for problem formulation, analysis and design.
 - Ability for using appropriate mathematical tools (software, hardware and mathematical algorithms) for the solution of related problems in computer systems engineering.
 - Ability for engineering thinking in analyzing the behavior of digital circuits and its design.
- Practical and subject specific skills (Transferable Skills).
 - Ability to map and minimize Boolean functions as well as represent them in various standard forms.
 - Ability to design and implement combinational logic circuits.
 - Understanding of various combinational "building blocks" such as decoders, multiplexers, and encoders.
 - Ability to design and implement arithmetic logic circuits.

- Ability to design and implement sequential circuits.
- Understanding of various sequential "building blocks" such as counters and shift registers.

Course Intended Learning Outcomes												
A - Knowledge and Understanding												
A1.	A2	2.	A3.		A4.	A5.		A	16 .	A7.		A8.
B - Intellectual Skills												
B1.	B2.]	B3.	B4.	H	35.	В	6.	B7.		B8.	B9.
C - Practical Skills												
C1.	C2.	C3.	. (C4.	C5.	C6		C7.	C	8.	C9.	C10.
D - Transferable Skills												
D1.		D2.		D3.	Ι	D4.		D5.		D6.		D7.

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects
- Quizzes.
- Home works
- Final examination: 50 marks

Allocation of Marks				
Assessment Instruments	Mark			
First exam	20%			
Second exam	20%			
Final examination: 50 marks	50%			
Reports, research projects, Quizzes, Home works, Projects	10%			

• Documentation style (with illustrative examples)

Protection by copyright Avoiding plagiarism.

Course/module academic calendar

wook	Basic and support	Homework/reports and				
WEEK	covered	their due dates				
(1)	Course Overview					
(1)	Introduction to Digital					
(2)	Systems.					
	Number Systems and					
	Conversions					
(3)	Boolean Algebra and	Assingment1 Week 4				
	Minimization Methods	Assingment?				
(+)	and Don't care conditions	Week 5				
(5)	Representation and	Assingment3				
	implementation of	Week 6				
	Boolean circuits using					
	other lagio gates					
	other logic gates.					
(6)	Tutorials, review and					
	study guide of first exam					
(7)	Analysis Procedure of					
First examination	combinational circuits					
(8)	Combinational Circuits	Assingment4				
	design, BCD Display	Week 9				
(9)	Adder and Subtractor,	Assingment5				
	Magnitude comparators,	Week 10				
(10)	Multiplexers, Encoders,					
	and Decoders.					
(11)	Tutorials, review and	Assingment6				
	study guide of second	Week 12				
(12)	exam material Sequential Circuits:	Assingment7				
(12) Second examination	Latches and Flip flops	Week 13				
(13)	Analyzing Sequential	Assingment8				
(13)	Circuits, Finite State	Week 14				
	Machine Design					
	Procedure.					
	Assignment					
(14)	Shift Registers, Counters,	Assingment9				
(1.)	And Timing Analysis	Week 15				
(15)	Tutorials, review and					
Specimen examination	study guide of final exam					
(Ontional)	material					
(16)						
Final Examination						

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

- 1. Practical Digital Logic Design and Testing, P. K. Lala, Prentice Hall, 1996.
- 2. Introduction to Digital Logic Design, J. P. Hayes, Addison-Wesley, 1996.
- 3. Digital Electronics: Principles and Applications, R. L. Tokheim, 5th Edition, McGraw-Hill, 2000.

Web sites

<u>http://lbadri.com</u> <u>http://www.digikey.com</u> <u>http://www.edaboard.com/forums.html</u>