Table of Contents

Contact Information

Introduction

Electrical Engineering Department

Electrical Engineering Department Faculty members

Electrical Engineering Curriculum

Student Guidance

Quality Assurance

Honors and Awards
Contact Information

Department Contacts

Department of Electrical Engineering
Philadelphia University
P.O.Box: 1
Amman, 19392
Jordan
Tel: ++ 962 2 6374444 x 2457

Dr. Kasim Al-Aubidy, Dean
Tel: ++ 962 2 6374444 x 2330
kma@philadelphia.edu.jo

Dr. Mahmoud Zeidan, Head of Department, Deputy Dean
Tel: ++ 962 2 6374444 x 2331
mzeidan@philadelphia.edu.jo

Dr. Audih al Faoury, Advisor
Tel: ++ 962 2 6374444 x 2149
afaoury@philadelphia.edu.jo

Important websites

Admission and Registration Information
http://www.philadelphia.edu.jo/admission.asp
http://www.philadelphia.edu.jo/arabic/admission.asp

Electrical Engineering Department
http://www.philadelphia.edu.jo/engineering-ee.asp

Deanships of Student Affairs
http://www.philadelphia.edu.jo/students.asp
History

Philadelphia University was established in 1989 as a private, accredited university in Amman, Jordan. The deanship of engineering was established in 1991, More than 450 engineers have graduated and are working inside Jordan and abroad. The faculty of Engineering includes the following departments:

- Electrical Engineering
- Computer Engineering
- Mechanical Engineering
- Communications and Electronics Engineering
- Mechatronics Engineering
- Architecture Engineering

The faculty of engineering constitutes of several buildings with a total area of 5400m², and it includes 28 specialized and highly equipped laboratories. The total number of engineering students is about 1000 students.

Mission

As a distinguished academic institution, Philadelphia University commits itself to becoming a full partner in the development of Jordanian society in particular as well as other societies at the regional and global levels. The role of science, technology, information and communication is becoming ever more vital to the well-being of humanity. In the coming few years, this role is bound to become a decisive engine of growth, High-quality relevant education, supported by problem-oriented, inter-disciplinary and inter-institutional research, as the only means of leading any society to become an active and productive partner in human civilization.

The speed of globalization and the collapse of cultural and economic barriers require modern education, e-learning and hardcore systems to be rooted in democratic interaction, human rights, unfettered freedom of thought and greater creativity by the younger sectors of society.

Whereas the rapid development of knowledge, science and technology to widen the cultural divide between generations and society, modern approaches to education and lifelong interactive learning will be indispensable in counteracting the affects of this trend.
Carrying a revered name, with deep routes in history, of a major city of the Decapolis on the King Road linking old civilizations, Philadelphia is committed to moving forward, through twin engines of quality and modernity, along the information highway. It hopes to affect a strong link between knowledge, learning and modern civilization.

The keyword is proper, fast-developing and morally charged education. Young men and women are the vehicle that propels societies into a future fuelled by education. Philadelphia and sister institutions can be instrumental in bringing this about.
Overview

The Electrical Engineering department at Philadelphia University has 154 students, which accounts for 13% of the total students in the faculty of engineering. The department has 9 faculty members with unique experience in various areas of Electrical engineering and who graduated from globally ranked foreign universities. The faculty to students ratio in the department is about 1:20. This is a ratio that will provide the students with more time to share with their respective faculty member to enhance the learning quality. The department has 7 laboratories that are dedicated to expose the students to the latest technologies in the subjects taught. Each laboratory is supervised by a faculty member, and is run by an experienced engineer.

Mission

The Electrical Engineering department has put forward several goals and missions so as to enhance the quality of its graduates. The graduate should be well prepared to face and solve problems they might encounter in the real world and integrate easily in their new environment after graduation. The objectives of the department can be summarized in the following:

- To introduce the student to the theoretical and practical aspect of electrical engineering
- To enhance the students ability to think logically, analysis and understand electrical engineering problems.
- To enhance and motivate the students toward creative thinking and innovation.
- To make the students comprehend engineering ethical principles and its application in real life.
- To implant the spirit of competition and continuous learning after graduation.
- To teach students leadership skills and team work.
Facilities

Department's Laboratories

The following laboratories are the cornerstone of the department where the students are exposed to the latest equipments used in testing, design, implementation and troubleshooting of electrical systems.

Electric circuit Lab.:

DC circuits, KVL and KCL, Mesh and nodal circuit analysis, Network theorems transient analysis of RL, RC and RLC circuits, AC circuit analysis.

Instrumentation and Measurement Lab.:

Electrical Machines Lab

Automatic Control Lab.:

Open and Closed Loop System Servomechanism Principles, the Effect of Gain, Integral Control, Proportional Control, Derivative Control and Velocity Feedback on System Performance, Frequency Response Measurement.

Power System Lab.:

Transmission lines performance. Load characteristics, Power system protection and relays, Balanced and unbalanced faults, Stability of power systems.
Technology Incubators

“Economic and social development cannot be achieved in the absence of initiative and creativity, or in the presence of fear and change”

His Majesty King Abdullah

II

The Jordan Innovation Center (JIC) at Philadelphia University is a new type of Business Incubators to be launched in Jordan to provide support and development of new innovative technical and business ideas. It supports innovative projects in any discipline given that have a commercial potential outcomes

A Business Incubator provides “a unique and highly flexible combination of business development processes, infrastructure and people, designed to nurture and grow new and small businesses by supporting them through the early stages of development and change.” (UKBI)

Business Incubators are a powerful economic development tool used extensively in Europe and the USA with around 4000 in existence worldwide today. The JIC at Philadelphia University intends to replicate this success within the Jordanian economy.

The Electrical Engineering Department at Philadelphia University has direct interactions with the Business Incubator at the university, where several senior project designs from the department have been supported and funded by the JIC.
The Electrical Engineering department includes the following full time faculty members:

- **Dr. Mahmoud Zeidan, Ph.D** (Assistant Professor)
 - Specialty: Electrical Engineering / Electrical Machines
 - Tel: 06 4799000 * 2331
 - Email: mzeidan@philadelphia.edu.jo

- **Dr. Munther Numan Baker, Ph.D** (Professor)
 - Specialty: Electrical Engineering / Control Engineering
 - Tel: 06 4799000 * 2339
 - Email: munther_baker44@yahoo.co.uk

- **Dr. Kais Bakir Alibrahimy, Ph.D** (Professor)
 - Specialty: Electrical Engineering / Control Engineering
 - Tel: 06 4799000 * 2339
 - Email: kais_alibrahimy@yahoo.com
 kalibrahimy@phiadalphila.edu.jo

- **Dr. Ibrahim Badran, Ph.D** (Associate Professor)
 - Specialty: Electrical Engineering / Power Systems
 - Tel: 06 4799000 x 2395
 - Email: i.badran@philadelphia.edu.jo

- **Dr. Mohammad Tawfiq, Ph.D** (Associate Professor)
 - Specialty: Electrical Engineering / Power Electronics
 - Tel: 06 4799000 x 2457
 - Email: drmohamadtofik@yahoo.com

- **Dr. Zuhair Shabeeb, Ph.D** (Associate Professor)
 - Specialty: Power Electronics / Electrical Machines & Drive Systems
 - Tel: 06 4799000 * 2419
 - Email: zuhairshebeeb48@yahoo.com
 zshebeeb@philadelphia.edu.jo

- **Dr. Audih al-Faoury, Ph.D** (Assistant Professor)
 - Specialty: Electrical Engineering / Power Systems
 - Tel: 06 4799000 x 2149
 - Email: audihalfoury@gmail.com
• Dr. Muhammed Ajour, Ph.D (Assistant Professor)
 Specialty: Electrical Engineering / Power Systems
 Tel: 06 4799000 x 2490
 Email: majour@philadelphia.edu.jo

• Dr. Ayman Taher Hindi, Ph.D (Assistant Professor)
 Specialty: Electrical Engineering / Power Systems
 Tel: 06 4799000 x 2589
 Email: drhindi@yahoo.com

• Eng. Abdallah alomoush, MSc. (Lecturer)
 Tel: 06 4799000 x 2457
 Email: Alomoush@philadelphia.edu.jo
Overview

Electrical engineering is one of the highly progressing disciplines that need to be up to date with state of the art technology. The courses offered by the Electrical Engineering department at Philadelphia University follow the highest standards and text books comparable with top foreign universities. Our faculty members have extensive experience in all aspects of Electrical engineering.

The Electrical engineering curricula at Philadelphia University consist of 160 credit hours (CH). Out of the 160 CH, there are (27) CH that are university requirements, (29) CH that are faculty requirements, and 104 CH that are department requirements. Each is divided into sub-requirements as shown in the tables that follow. Grades at Philadelphia University are given in percentages (out of 100). A student is supposed to pass the courses with an accumulative grade point average of **60%** to graduate. A detailed grade description can be found at the admissions office website.

Electrical Engineering Curricula

1 - University Requirements (27) CH

1-1 University Compulsory Requirements: (12)CH

<table>
<thead>
<tr>
<th>Course No</th>
<th>Course Title</th>
<th>Cr. H.</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>110101</td>
<td>Arabic language Skills (1)</td>
<td>3</td>
<td>-----</td>
</tr>
<tr>
<td>111100</td>
<td>Military Science</td>
<td>3</td>
<td>-----</td>
</tr>
<tr>
<td>111101</td>
<td>National Education</td>
<td>3</td>
<td>-----</td>
</tr>
<tr>
<td>130101</td>
<td>English language Skills (1)</td>
<td>3</td>
<td>130099</td>
</tr>
</tbody>
</table>

1-2 University Elective Requirements: (15)CH

- Social Science (3-6) CH

<table>
<thead>
<tr>
<th>Course No</th>
<th>Course Title</th>
<th>Cr. H.</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>110102</td>
<td>Arabic Language Skills (2)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>130103</td>
<td>English Language skills (3)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>140101</td>
<td>Foreign Language (French)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>110102</td>
<td>Arabic Language Skills (2)</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

- Social Science and Economics (3-6) CH
<table>
<thead>
<tr>
<th>Course No</th>
<th>Course Title</th>
<th>Cr. H.</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>111111</td>
<td>Introduction to Sociology</td>
<td>3</td>
<td>---</td>
</tr>
<tr>
<td>111112</td>
<td>Introduction to Psychology</td>
<td>3</td>
<td>---</td>
</tr>
<tr>
<td>111133</td>
<td>Human Thought and Civilization(1)</td>
<td>3</td>
<td>---</td>
</tr>
<tr>
<td>111142</td>
<td>Means for Communication and Society</td>
<td>3</td>
<td>---</td>
</tr>
<tr>
<td>330101</td>
<td>Introduction to Administration</td>
<td>3</td>
<td>---</td>
</tr>
</tbody>
</table>

Science, Technology, Agriculture and Health: (3-6) CH

<table>
<thead>
<tr>
<th>Course No</th>
<th>Course Title</th>
<th>Cr. H.</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>210121</td>
<td>History of Science</td>
<td>3</td>
<td>---</td>
</tr>
<tr>
<td>240141</td>
<td>Nutrition Fundamentals</td>
<td>3</td>
<td>---</td>
</tr>
<tr>
<td>240151</td>
<td>Human and Environment</td>
<td>3</td>
<td>---</td>
</tr>
<tr>
<td>620105</td>
<td>Automobile Fundamentals</td>
<td>3</td>
<td>---</td>
</tr>
<tr>
<td>750111</td>
<td>Computer Sills</td>
<td>3</td>
<td>750099</td>
</tr>
</tbody>
</table>

2– Faculty Requirements (29) CH

<table>
<thead>
<tr>
<th>Course No</th>
<th>Course Title</th>
<th>Cr. H.</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>640306</td>
<td>Engineering Skills</td>
<td>3</td>
<td>130102</td>
</tr>
<tr>
<td>620162</td>
<td>Engineering Workshop (1)</td>
<td>1</td>
<td>620121</td>
</tr>
<tr>
<td>620163</td>
<td>Engineering Workshop (2)</td>
<td>1</td>
<td>620162</td>
</tr>
<tr>
<td>610504</td>
<td>Entrepreneurship</td>
<td>3</td>
<td>640306 + 120 Crh.</td>
</tr>
<tr>
<td>210101</td>
<td>Mathematics (1)</td>
<td>3</td>
<td>-----</td>
</tr>
<tr>
<td>210106</td>
<td>Mathematics for Engineering Students</td>
<td>3</td>
<td>210101</td>
</tr>
<tr>
<td>650201</td>
<td>Engineering Analysis (1)</td>
<td>3</td>
<td>210106</td>
</tr>
<tr>
<td>630202</td>
<td>Engineering Analysis (2)</td>
<td>3</td>
<td>650201</td>
</tr>
<tr>
<td>630203</td>
<td>Programming Language</td>
<td>3</td>
<td>-----</td>
</tr>
<tr>
<td>211104</td>
<td>Applied Physics</td>
<td>3</td>
<td>-----</td>
</tr>
</tbody>
</table>

3 – Department of Electrical Engineering Requirements (104) CH

3-1 Compulsory Requirements (95) CH

<table>
<thead>
<tr>
<th>Course No</th>
<th>Course Title</th>
<th>Cr. H.</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>610211</td>
<td>Electric Circuits (1)</td>
<td>3</td>
<td>211104</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credits</td>
<td>Pre-Requisite</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>610212</td>
<td>Electric Circuits (2)</td>
<td>3</td>
<td>610211</td>
</tr>
<tr>
<td>610216</td>
<td>Electric Circuit Lab.</td>
<td>1</td>
<td>610212</td>
</tr>
<tr>
<td>610304</td>
<td>Engineering Analysis (3)</td>
<td>3</td>
<td>630202</td>
</tr>
<tr>
<td>610307</td>
<td>Reverse Engineering</td>
<td>3</td>
<td>640306</td>
</tr>
<tr>
<td>610351</td>
<td>Instrumentation and Measurement</td>
<td>3</td>
<td>650321</td>
</tr>
<tr>
<td>610356</td>
<td>Instrumentation and Measurement Lab.</td>
<td>1</td>
<td>610351 + 650326</td>
</tr>
<tr>
<td>610381</td>
<td>Electrical Machines (1)</td>
<td>3</td>
<td>650241</td>
</tr>
<tr>
<td>610390</td>
<td>Engineering Project(1)</td>
<td>1</td>
<td>620163+ 650221</td>
</tr>
<tr>
<td>610386</td>
<td>Electrical Machines (1) Lab.</td>
<td>1</td>
<td>610381</td>
</tr>
<tr>
<td>610580</td>
<td>Electrical Machines (2) Lab.</td>
<td>1</td>
<td>610589</td>
</tr>
<tr>
<td>610451</td>
<td>Automatic Control</td>
<td>3</td>
<td>610351</td>
</tr>
<tr>
<td>610456</td>
<td>Automatic Control Lab.</td>
<td>1</td>
<td>610451+ 610356</td>
</tr>
<tr>
<td>610481</td>
<td>Power System (1)</td>
<td>3</td>
<td>610381</td>
</tr>
<tr>
<td>610482</td>
<td>Power System (2)</td>
<td>3</td>
<td>610481</td>
</tr>
<tr>
<td>610486</td>
<td>Power System Lab.</td>
<td>1</td>
<td>610481</td>
</tr>
<tr>
<td>610488</td>
<td>Small Electrical Machines</td>
<td>3</td>
<td>610381</td>
</tr>
<tr>
<td>610479</td>
<td>High Voltage Engineering</td>
<td>3</td>
<td>610481</td>
</tr>
<tr>
<td>610589</td>
<td>Electrical Machines(2)</td>
<td>3</td>
<td>610381+610386</td>
</tr>
<tr>
<td>610582</td>
<td>Electrical Drive Systems</td>
<td>3</td>
<td>610451</td>
</tr>
<tr>
<td>610581</td>
<td>Power Electronics</td>
<td>3</td>
<td>650321</td>
</tr>
<tr>
<td>630261</td>
<td>Logic Circuits</td>
<td>3</td>
<td>710101</td>
</tr>
<tr>
<td>630371</td>
<td>Microprocessors</td>
<td>3</td>
<td>630261</td>
</tr>
<tr>
<td>610584</td>
<td>Transmission &Distribution Systems Design</td>
<td>3</td>
<td>610481</td>
</tr>
<tr>
<td>610585</td>
<td>Power System Protection</td>
<td>3</td>
<td>610482</td>
</tr>
<tr>
<td>610498</td>
<td>Engineering Project (2)</td>
<td>1</td>
<td>640397</td>
</tr>
<tr>
<td>610598</td>
<td>Engineering Project (3)</td>
<td>2</td>
<td>610498</td>
</tr>
<tr>
<td>620214</td>
<td>Applied Mechanics</td>
<td>3</td>
<td>640306</td>
</tr>
<tr>
<td>630266</td>
<td>Logic Circuits Lab.</td>
<td>1</td>
<td>630261</td>
</tr>
<tr>
<td>630376</td>
<td>Microprocessor Lab.</td>
<td>1</td>
<td>630371+63026</td>
</tr>
<tr>
<td>650221</td>
<td>Electronics (1)</td>
<td>3</td>
<td>610211</td>
</tr>
<tr>
<td>650241</td>
<td>Electromagnetics (1)</td>
<td>3</td>
<td>650201</td>
</tr>
<tr>
<td>650321</td>
<td>Electronics (2)</td>
<td>3</td>
<td>650221</td>
</tr>
<tr>
<td>650326</td>
<td>Electronics Lab.</td>
<td>1</td>
<td>650321+610216</td>
</tr>
<tr>
<td>Course No</td>
<td>Course Title</td>
<td>Cr. H.</td>
<td>Prerequisite</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>650421</td>
<td>Digital Electronics</td>
<td>3</td>
<td>650221</td>
</tr>
<tr>
<td>650331</td>
<td>Signal Analysis and Processing</td>
<td>3</td>
<td>630202</td>
</tr>
<tr>
<td>650341</td>
<td>Electromagnetics (2)</td>
<td>3</td>
<td>650241</td>
</tr>
<tr>
<td>650431</td>
<td>Analogue Communications</td>
<td>3</td>
<td>650331</td>
</tr>
<tr>
<td>650437</td>
<td>Communications Lab.</td>
<td>1</td>
<td>650431</td>
</tr>
<tr>
<td>610499</td>
<td>Engineering Training</td>
<td>3</td>
<td>110CH</td>
</tr>
<tr>
<td>620121</td>
<td>Engineering Drawing</td>
<td>3</td>
<td>-----</td>
</tr>
</tbody>
</table>

3-2 Electives Requirements in Electrical Engineering (9)

<table>
<thead>
<tr>
<th>Course No</th>
<th>Course Title</th>
<th>Cr. H.</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>610483</td>
<td>Resources and Economics of Energy</td>
<td>3</td>
<td>610381</td>
</tr>
<tr>
<td>610484</td>
<td>Electrical Energy Generation</td>
<td>3</td>
<td>610381</td>
</tr>
<tr>
<td>610575</td>
<td>Electrical Machine Design</td>
<td>3</td>
<td>610589</td>
</tr>
<tr>
<td>610578</td>
<td>Stability of Electrical Systems</td>
<td>3</td>
<td>610481</td>
</tr>
<tr>
<td>610582</td>
<td>Electrical Drive Systems</td>
<td>3</td>
<td>610451</td>
</tr>
<tr>
<td>610586</td>
<td>Reliability of Power System</td>
<td>3</td>
<td>610481</td>
</tr>
<tr>
<td>610597</td>
<td>Special Topics in Electrical Eng.</td>
<td>3</td>
<td>Dep.</td>
</tr>
<tr>
<td>640480</td>
<td>Digital Control</td>
<td>3</td>
<td>610451</td>
</tr>
<tr>
<td>640573</td>
<td>Programmable Logic Controllers</td>
<td>3</td>
<td>630371</td>
</tr>
</tbody>
</table>
Course Description

Engineering Entrepreneurship (610504) preq(640306+120 crh)

Basic concepts of macro & micro economics, Economy architecture, Production process, The effect of Science and Technology on production, The use of Science and Technology in production, Skills, Free business, Services and commodities production, Methods of project propagation, Marketing studies, Export, Import and interior market consumption, Project forming, Project requirements, Economic appraisal studies, Project financing, Banking, Companies, Cost studies, Project management, Marketing.

Electric circuits(1) (610211) preq (211104)

Electric Circuits(2) (610212) preq (610211)

Electric Circuit Lab. (610216) preq (610212)

DC circuits. KVL and KCL. Mesh and nodal circuits analysis. Network theorems, Transient analysis of RL, RC and RLC circuits. AC circuit analysis.

Engineering Analysis (3) (610304) preq (630202)

Reverse Engineering (640397) preq(610390)

Basic concepts of reverse engineering, History of reverse engineering, prescreening and preparation for the four stage Process, Evaluation verification, Technical data generation, Design verification, Project implementation, Future Applications.

Instrumentation and Measurement (610351) preq (650321)

Instrumentation and Measurement Lab. (610356) preq (610351) + (650326)

Electrical Machines(1) (610381) preq (650241)

Engineering Project (1) (610390) preq (620163+650221)

Theoretical investigation, practical implementation or both for a project under the supervision of a faculty staff member. Detailed report as well as oral examination are required.

Electrical Machines (1) Lab. (610386) preq (610381)

Electrical Machines (2) Lab. (610580) preq (610589)

Automatic Control (610451) preq (610351)

Automatic Control Lab. (610456) preq (610451) + (610356)

Power System (I) (610481) preq (610381)

Power System (II) (610482) preq (610481)

Resources and Economics of Energy (610483) Preq (610381)

Energy resources, Types of power plants , Requirements of power plants, Fossil fueled power plants , Fuel handling and processing system, Steam generation systems , Steam turbines ,Plant auxiliary systems, Gas turbine, Gas turbine functional description, Single and multi –stage GT,Combined cycle GT, Hydroelectric power plant, Nuclear power Plant , Alternative methods of electric energy generation: Renewable energy ,Solar power plant, solar collectors ,Wind power plant, Biomass power plants, Unit characteristics and economic operation; economic planning of integrated power systems, Kelvin's law, Bulk supply economics, Reliability and deregulation.

Power System Lab. (610486) preq (610481)

Small Electrical Machines (610488) preq (610381)

Servo motor, Permanent magnet, stepper motor, brushless DC motor, Switched reluctance motor, synchronize machines.

High voltage Engineering (610479) preq(610481)

Electrical Machines (2) (610589) preq (610381) + (610386)

Electrical Drives Systems (610582) preq (610451)

Power Electronics (610581) preq (650321)

Introduction to power semiconductor devices, AC to DC converters: Single-phase and poly-phase half-wave and full-wave uncontrolled and controlled rectifier circuits, DC choppers, AC Choppers, DC to AC converters, single-phase and three-phase inverters, DC-DC switch mode converters, Envelope and phase controlled AC-AC frequency changers

Transmission & Distribution Systems Design (610584) preq (610481)

Transmission, compensation. Transmission line conductors: Span, sag, tension, vibration, construction example, Projects on design of 11 and 132 KV OHL's and transmission systems.

Power system Protection (610585) preq (610482)

Engineering project (2) (610498) preq (640397)
The student should be supervised by one or more faculty staff members who assign him a project. The student analyses the project and suggests a method to carry out the project and writes a technical report in English.

Engineering Project (3) (610598) preq (610498)
Based on the results obtained from Engineering project (2) the student develops the project to more advance level and write an advance technical thesis in English.

Electrical Energy Generation (610484) preq (610381)
Basic principles, Production and transfer of energy in power system, VAR flows, economic operation of power system, power system control, Energy Accounting in interconnected operations, communications in power systems, Telemetering methods, Supervisory Data and control acquisition systems (SCADA), power system reliability factors, power system protection, power system stability, EHV operation,

Reliability of Power Systems (610586) preq (610481)
Basic reliability concepts, Distribution systems reliability evaluation, Probabilistic approach, Generating capacity reliability evaluation, Probabilistic generation and load models, LOLP-loss of load probability, Static and spinning generating – capacity reliability, Transmission system reliability. Composite system and interconnected system reliability.

Programmable Logic Controllers (640573) preq(630371)

Digital Control (640480) preq (610451)
Review of continuous control, Introductory digital control, Discrete system analysis, Sampled data systems, Discrete equivalents, Design using transform techniques, Multivariable and optimal control, Quantization effect, Sample rate selection, System identification, Nonlinear control.

Electrical Machines Design (610575) preq (610589)

Stability of Electrical System (610578) preq (610481)

Power systems basic concepts review, power system structure and topology, System modeling: generation, transmission and load, Small perturbation stability: Basic non linear stability, continuation power flow, voltage stability, system oscillations, Large perturbation stability: Transient stability, time domain analysis and direct stability analysis techniques.

Special Topics in Electrical Engineering (610597) (Dept. Approval)

Up-to date subjects in Electrical Engineering .

Engineering Training (610499) preq (110 crh)

A training period of ten weeks after (110) credit hours has to be spent by the student in the industry (inside or outside Jordan) under the supervision of an academic member from the department, periodical as well as a final reports and oral examinations are required.

Logic Circuits (630261) preq (630203)

Logic Circuits Lab. (630266) preq (630261)

Microprocessor (630371) preq (630261)

Microprocessor Lab. (630376) preq (630371)

Familiarization with the Microprocessor Lab. Microprocessor Instruction Set and Assembly Language Fundamentals. Writing, Debugging, and Executing Various Assembly Language Programs. Memory (RAM) Interfacing. Microprocessor interfacing.

Electronics (1) (650221) preq (610211)

Semiconductor theory. PN junction. Diode circuits and applications. Bipolar junction transistor characteristics. DC biasing and small signal analysis. Field effect transistor theory and applications.

Electronics (2) (650321) preq(650221)

Electromagnetics (1) (650241) preq (650201)

Electromagnetics (2) (650341) preq (650241)

Electronics Lab. (650326) preq (650321) + (610216)

Signal Analysis & Processing (650331) preq(630202)

Classes of signals and systems. Fourier series and transform. Convolution and impulse response. Correlation and power spectral density. Theory and design of

Analog Communications (650431) preq(650331)

Communications Lab. (650437) preq (650431)

Signal Source, Tuned circuit, Electromechanical filters, Amplitude modulation, AM detection and demodulation, Single sideband transmission, Amplifier and transistor modulator, superhydroyde, radio, frequency modulation, FM detection.

Digital Electronics: (650421) preq (650221)

Semiconductor devices and switching characteristics, Logic gates and families, Memory elements and types, Timing circuits, Programmable logic devices, Analog/digital and digital/ analog converters, Visual display.
Student Guidance

The definition of academic Guidance is based on the interaction between the engineering student and his/her advisor until the required courses within his/her curricula is being registered.

The student has to know the following:

- Each student in the faculty of engineering has an assigned academic advisor that is chosen by the department. The advisor is responsible to give directions for the student while choosing courses for registration. This should be performed at the beginning of every semester.

- The student has to take the following points into consideration while in the registration process:

 o Making sure that he/she passed the prerequisite (refer to Electrical Engineering Curricula)
 o The registration should follow the sequence shown in the study plan, this should include:
 ▪ University requirements: compulsory and electives.
 ▪ Faculty requirements: compulsory and electives.
 ▪ Specialty requirements.
 o It is preferred that the student refers to the study plan during the registration process to take the suggested load of credit hours according to the semester and year specified.
 o The academic Guidance process is not compulsory, so the student can register for classes without taking the advisor comments into consideration, but the student will take full responsibility for this action as well as its consequences since this might delay his/her graduation.

- The student must understand that the registrars from for at least 12 credit hours and at most of 18 credit hours in regular semesters.

- The student has the right to withdraw (Drop) from a course or more during a certain semester under the condition that the student has to stay registered for at least 9 credit hours. This withdrawal (Drop) should be approved by the course professor as well as the academic advisor.

 The withdrawal (Drop) should take place in a specific period of time that is set by the admission and registration department. There is a defined period within which the student can be refund for the course fees, after this time period the student will loose his right to any the refund.

- The student can Add/Drop courses according to the admission and registration office time table only. The student is allowed a limited number of Adds/Drops that is set by the admissions and registration department.
Quality Assurance

Philadelphia University has achieved the first ranking leading all public and private universities in Jordan in the quality assurance of the Hussein Fund for Creativity and Excellence for the faculties of Information Technology and Law. The university has set and demonstrated the highest quality assurance measures in teaching, management and research development that have attracted the attention of domestic and foreign institutions.

In the Electrical Engineering department, the highest measures of quality assurance are being adopted to raise the level of teaching standards, and implement clear measures for teaching, advising, senior project organization, testing and course assessment. This is put in a feedback system that helps the department to hear the comments from the students and allow them to evaluate both the course and the instructor of each course they attend in the department. This of course increases the level and quality of teaching and information delivery.

The mission of the department and its objectives stresses on the implementation of the highest quality measures and regulations to provide the best learning experience to our students. (See department mission in Electrical Engineering Department mission section)

Honors and Awards

Philadelphia University as well as the Electrical Engineering Department promotes and encourages students to excel in their studies through the introduction of various awards and honor lists that present the names of top students.

These awards are listed on the University Admission site (http://www.philadelphia.edu.jo/admission.asp). Also, an annual honor list is published and engraved on the entrance of the Deanship of Engineering that highlights the names of the honored students from each engineering discipline.