

# Philadelphia University

Faculty of Engineering - Department of Electrical Engineering

# **Course Details:**

Title: Automatic Control (610414)

**Prerequisite:** Measurement & Instrumentation (610332)

**Credit Hours:** 3 credit hours (16 weeks per semester, approximately 45 contact hours)

Textbook: 'Modern Control Engineering, by Katsuhiko OGATA, Pearson Education,

2002

**Description:** The course is a requirement for level 4 of electric engineering students. It

introduces the basic principles and analysis of control feedback systems.

#### **Course Outlines:**

| Week   | Торіс                                                                                                                      |
|--------|----------------------------------------------------------------------------------------------------------------------------|
| 1,2    | Revision of basic and required mathematics for the course, types of roots and Laplace transformation.                      |
| 3, 4   | Mathematical modeling of physical, electrical and mechanical systems.  Differential equation derivation.                   |
| 5      | Definition of system and it's types.                                                                                       |
| 6, 7   | Definition of transfer function, zeros and poles real, multiple and complex.  Laplace transform of differential equations. |
| 8      | Concept of open-loop and closed-loop systems.                                                                              |
| 9, 10  | Block diagram representation, block diagrams manipulation, block diagram reduction, Mason's Gain Formula.                  |
| 11, 12 | Time response determination for different inputs. Partial fraction expansion and inverse Laplace transformation.           |
| 13     | Damping ratio and natural undamped frequency, Time response specifications, PID controllers                                |
| 14     | Stability concept and analysis of control system                                                                           |
| 15     | Routh's stability criterion                                                                                                |
| 16     | Root locus method, concept, rules of sketching and analysis, Revision                                                      |

## **Course Learning Outcomes with reference to ABET Student Outcomes:**

Upon successful completion of this course, student should:

| 1. | Understand the concept of physical systems                                            | [a, d, e] |
|----|---------------------------------------------------------------------------------------|-----------|
| 2. | Carry out mathematical modeling of physical systems                                   | [a, c]    |
| 3. | Know the meaning and application of transfer function, zeros and poles                | [a, c, d] |
| 4. | Understand the concept of block diagram, manipulation and reduction of block diagrams | [a, c]    |
| 5. | Determination of time response and evaluation.                                        | [a, c]    |
| 6. | Understand the concept of system stability                                            | [a, c]    |
| 7  | Use root-locus for control system analysis                                            | [e, k]    |

#### **Assessment Guidance:**

Evaluation of the student performance during the semester (total final mark) will be conducted according to the following activities:

**Sub-Exams:** The students will be subjected to two scheduled written exams, first

exam and second exam during the semester. Each exam will cover

materials given in lectures in the previous 3-4 weeks.

Quizzes: (3-5) quizzes of (10-15) minutes will be conducted during the

semester. The materials of the quizzes are set by the lecturer.

**Homework** Tutorials sheets will be handed out to the students and homework and projects: should be solved individually and submitted before or on a set

should be solved individually and submitted before or on a set agreed date. Student may be assigned to present project(s).

Cheating by copying homework from others is strictly forbidden

and punishable by awarding the work with zero mark

**Final Exam:** The students will undergo a scheduled final exam at the end of the

semester covering the whole materials taught in the course.

#### **Grading policy:**

First Exam 20%
Second Exam 20%
Homework and homework 20%
Final Exam 40%

Total: 100%

### **Attendance Regulation:**

The semester has in total 45 credit hours. Total absence hours from classes and tutorials must not exceed 15% of the total credit hours. Exceeding this limit without a medical or emergency excuse approved by the deanship will prohibit the student from sitting the final exam and a zero mark will be recorded for the course. If the excuse is approved by the deanship the student will be considered withdrawn from the course.

January, 2018