

Philadelphia University

Faculty of Engineering - Department of Mechanical Engineering

Course Information

Title:	Hydraulic Machines (0620528)	
Prerequisite:	Fluid Mechanics (1)	
Credit Hours:	3 credit hours (16 weeks per semester, approximately 44 contact hours)	
Textbook:	Hydraulic Machines, K Subramanya, Tata McGraw Hill Education Private Limited, 2013.	
References:	 Hydraulic and Compressible Flow Turbo-machines, A. T. Sayers, McGraw-Hill, 1990. A Text Book of Fluid Mechanics and Hydraulic Machines by R. K. Bansal. Basic Fluid Mechanics and Hydraulic Machines by Zoeb Husain, Mohd. ZulkiflyAbdullah and Zainal Alimuddin 	
Catalog Description:	This course object to give the student knowledge about: the geometry and design of turbo machines, the approach of two dimensional cascades and velocity triangles in the analysis of turbo-machines, define the efficiency of turbine and compressor machines, the operation of axial and centrifugal turbo machines and the performance of hydraulic turbines such as: <i>Pelton, Francis</i> and <i>Kaplan</i> turbines	
Websites:	http://www.philadelphia.edu.jo/academics/adaraje/	
	http://www.philadelphia.edu.jo/academics/laithb/	
Instructors:	Prof. Assim Hammed Yousif Al-Daraje Email: adaraje@philadelphia.edu.jo Office: Engineering building, room E61306, ext: 2206 Office hours: Sunday, Tuesday and Thursday 10:00 – 11:00	

Course Topics

Week	Торіс	
1-2	Chapter 1: Introduction hydraulic machines	
3-5	Chapter 2: reaction turbines (Francis turbines)	
7 - 8	Chapter 4: impact turbines (Pelton wheel)	
9 – 11	Chapter 5: centrifugal pumps	
12-13	Chapter 3: reaction turbines (Kaplan turbines)	
14 – 15	Chapter 7: miscellaneous hydraulic machinery and devices	
16	Review, and final exam	

Course Learning Outcomes and Relation to ABET Student Outcomes:

Upon successful completion of this course, a student should:

1.	Have the ability to differ between different types of hydraulic machines	[1]
----	--	-----

2.	Use similarity analysis to select similar machines and test analysis	[2]
3.	3. Drawing velocity triangles for all types of hydraulic machines	
4.	Design a Pelton wheel hydraulic system and test analysis	[2]
5.	Design a Francis turbine hydraulic system	[2]
6.	Design a Kaplan turbine hydraulic system	[2]
7	Understand the principle of work for a centrifugal pump and test analysis	[6]
8	Learning the selection criteria for centrifugal pumps and test analysis	[6]

Assessment Instruments:

Evaluation of students' performance (final grade) will be based on the following categories:

- **Exams:** Two written exams will be given. Each will cover about 3-weeks of lectures
- **Quizzes**: 10-minute quizzes will be given to the students during the semester. These quizzes will cover material discussed during the previous lecture(s).
- **Participation:** Questions will be asked during lecture and the student is assessed based on his/her response

Final Exam: The final exam will cover all the class material.

Grading policy:

First Exam	20%
Second Exam	20%
Quizzes and participation	15%
Homework	5%
Final Exam	40%
Total:	100%

Attendance policy:

Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse, acceptable to and approved by the Dean of the relevant college/faculty, shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

February, 2017