

Philadelphia University

Faculty of Engineering and Technology Department of Mechanical Engineering

Course Information

Course Title:	Heat transfer lab (620427)	
Prerequisite:	erequisite: Heat transfer 2 (620426)	
Credit Hours:	Hours: 1credit hours (3 hours/ week, 14 weeks per semester)	
Textbook:	extbook: Lab manual ,lecture notes	
References:	Principle of heat and mass transfer	
Course Description:	 To provide students with the necessary skills to conduct experiments on conduction, and convection of heat; collect data, perform analysis and interpret results to draw valid conclusions through standard test procedures. To determine thermal properties and performance of radiation heat transfer, heat exchanger, condensation, boiling. 	
Course		
requirements:	Computer, internet connection, webcam	
Instructor:	Eng. Azad F. Otoum Office : Engineering building, Mechanical Department, room 6212, ext: 2252	

Course Topics(Experiments):

Week	Experiments.	
1	Marcet boiler	
2	Thermal conductivity	
3	Natural convection and radiation	
4	Forced convection heat transfer	
5	Film and drop-wise condensation	
6	Heat exchanger 1 (parallel and counter flow)	
7	Heat exchanger 2 (effect of flow rate variation)	

ABET Student Outcomes (SOs)

1	An ability to identify, formulate, and solve complex engineering problems by applying
	principles of engineering, science, and mathematics
2	An ability to apply engineering design to produce solutions that meet specified needs with
	consideration of public health, safety, and welfare, as well as global, cultural, social,
	environmental, and economic factors
3	An ability to communicate effectively with a range of audiences
4	An ability to recognize ethical and professional responsibilities in engineering situations and
	make informed judgments, which must consider the impact of engineering solutions in
	global, economic, environmental, and societal contexts
5	An ability to function effectively on a team whose members together provide leadership,
	create a collaborative and inclusive environment, establish goals, plan tasks, and meet
	objectives
6	An ability to develop and conduct appropriate experimentation, analyze and interpret data,
	and use engineering judgment to draw conclusions
7	An ability to acquire and apply new knowledge as needed, using appropriate learning
	strategies

Course Learning Outcomes and Relation to ABET Student Outcomes:

Up on successful completion of this course, a student should be able to:

1.	Understand some important concepts in heat transfer such as :(Boiler, Exchanger, Condensation, Conductivity, Convection, and Radiation).	[6]
2.	Develop and conduct appropriate experimentation on laboratory instruments and equipment to collect data. Ability to measure temperatures, thermal conductivity, velocity flow profile, and flow rate.	[6]
3.	Students must apply their technical writing skill to all design projects graduated projects and using engineering judgment to draw conclusions.	[6]
4.	Know the thermal and physical properties of material in relation to heat transfer and to understand the effect of temperature and pressure on those properties.	[6]
5.	Estimate heat transfer by forced convection in horizontal pipe.	[6]
6.	Ability to measure the quantity of heat transfer between fluids and solid boundaries, amount of heat exchanged between two fluids and amount of radiation heat transfer	[6]

Evaluation methods:

Evaluation of students' performance (final grade) will be based on the following categories:

- **Reports:** Each experiment has a report describing abstract, introduction, procedure, readings, results, discussion and analysis, and conclusion.
- **Quizzes**: Three quizzes will be given to the students during the semester. These quizzes will cover each three experiments in the lab. Fifteen minutes for each quiz.

Final Exam: The final exam will cover all the class material.

Grading policy:

Mid	30% (Reports, and Assignment)
Third	30% (Reports, and Quiz)
Final Exam	40%
Total:	100%

Attendance policy:

Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse, acceptable to and approved by the Dean of the relevant college/faculty, shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course