

Philadelphia University Faculty of Engineering Mechanical Engineering Department First Semester, 2010/2011

	<u>Course Syllabus</u>	
Course Title Automatic control	Course code: (620452)	
Course Level: 4	Credit hours:3	

Course module description:

Analysis and synthesis of automatic control systems. Transfer functions. Root locus, Nyquist and Bode techniques. Introduction to state space formulation.

Course module objectives:

The objective of this course is to apply knowledge of mathematics and engineering to analyze and design a control system to meet desired specifications. Students should learn to analytically determine a control system's functionality and select appropriate tests to demonstrate system's performance and finally design a control system to meet a set of requirements. Develop an understanding of the elements of classical control theory as applied to the control of aircraft and spacecraft. In particular understand: the concept of feedback and its properties; the concept of stability and stability margins; and the different tools that can be used to analyze the previous properties. Finally gain a working knowledge of the basic linear design techniques.

Course/ module components

- Books (title , author (s), publisher, year of publication)
- Control System Engineering, Norman S. Nice, Fifth Edition ,John Wiley &Sons

Support material (s) (vcs, acs, etc).

- Modern Control Engineering by Katsuhiko Ogata, 4th Edition, Prentice Hall, 2002.
- Study guide :
- Homework and laboratory guide (s) if (applicable).

Teaching methods:

Lectures, tutorials, and problem solving,

Learning outcomes:

- Knowledge and understanding
 - An ability to apply knowledge of mathematics, science and engineering.
 - An ability to perform laboratory work and report on its outcome.

- An ability to use the analysis and design tools of classical linear control in simplified homework problems, and in more realistic laboratory problems.
- An ability to use modern computer tools such as MatLab and web-based tutoring tools.
- Communication skills (personal and academic).
 - To help the student develop critical thinking and Problem-solving.
- Practical and subject specific skills (Transferable Skills).

Assessment instruments

- Quizzes.
- Home works
- Final examination: 50 marks

Allocation of Marks			
Assessment Instruments	Mark		
Firist examination	20		
Second examination	20		
Final examination: 50 marks	50		
Reports, research projects, Quizzes, Home works, Projects	10		
Total	1000		

Documentation and academic honesty

• Documentation style (with illustrative examples)

Use the following style of references

Caps R, Heinemann U, Ehrmanntraut M, Fricke J. Evacuated insulation panels filled with pyrogenic silica powders: properties and applications. High Temp-High Press 2001; 33:151–6.

- Protection by copyright
- Avoiding plagiarism.

	Basic and support	Homework/reports
week	material to be covered	and their due dates
(1)	Basic control system	
	concepts	
(2)	Transfer functions of	
	physical systems	
(3)	Transfer functions of	
	physical systems	
(4)	Transient response	
(5)	Transient response	
(6)	Equivalent systems	
First examination		
(7)	Equivalent systems	
(8)	Transient response	
	stability	
(9)	Forced response errors	
(10)	Forced response errors	
(11)	Root locus method	
12		
Second examination	Root locus method	
(13)	Design using the root	
	locus method	
(14)	Frequency response	
(15)	Design using the	
	frequency response	
(16)		
Final Examination		

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

- Feedback Control of Dynamic Systems by Gene F. Franklin, J. David Powell and Abbas Emami-Naeini, 4th Edition, Prentice Hall, 2002.
 Modern Control Engineering by Katsuhiko Ogata, 4th Edition, Prentice
- Hall, 2002.

Journals

Websites