

Philadelphia University Faculty of Engineering Department of Mechanical Engineering First Semester, 2009/2010

Course Syllabus

Course Title: Production Process	Course code: (620461 + 620463)	
Course Levels 2	Course prerequisite (s) and/or co requisite (s):	
Course Level: 3	Engineering Materials Properties (620361)	

Course description:

To introduce the students with the fundamentals of: mechanical behavior of materials, bulk deformation processes, material removal processes, sheet metal forming processes and modern manufacturing systems.

Course objectives: At completing this course the student should:

- Understand different types of mechanical behavior of materials.
- Classify the forming processes with respect to temperature & strain rate.
- Understand the forging, rolling, extrusion & rod drawing.
- Calculate the energy & press capacity required for the previous processes.
- Understand the mechanics of metal removing processes.

Course components

• Books (title , author (s), publisher, year of publication)

Manufacturing Processes for Engineering Materials, S. Kalpakjian, ,3rd Edition.

Teaching methods:

- 2 Lectures a week
- 1-2 Appointments for tutorials and discussion after each chapter

Learning outcomes:

- Knowledge and understanding The student should be able to understand the basic classification of stress and strain and manufacturing processes.
- Cognitive skills (thinking and analysis).

The students should link the concepts that they are learning with the real applications by giving live examples where the subject concepts are applied.

• Communication skills (personal and academic).

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects
- Quizzes.
- Home works
- Final examination: 50 marks

Allocation of Marks		
Assessment Instruments	Mark	
First examination	20	
Second examination	20	
Final examination: 50 marks	50	
Reports, research projects, Quizzes, Home works, Projects	10	
Total	100	

Documentation and academic honesty

• Documentation style (with illustrative examples)

Students will be given the key solution after each exam to compare with their answers as well as the marking scheme. If any has an objection then the supervisor should consider it based on the key solution and the marking scheme. If the student has extra marks then he it should be added to him

• Avoiding plagiarism.

The university has strict rules about plagiarism and it will be considered where it is necessary.

	Basic and support	Homework/reports and
week	material to be covered	their due dates
(1)	Introduction	
(2)	Fundamental of mechanical	
	behavior of materials: Tension	
(3)	Fundamental of mechanical	
	behavior of materials: ductility	Quiz at the end of the
(4)	Fundamental of mechanical	chapter.
	behavior of materials: Torsion,	
	flexure, hardness fatigue and	
(5)	creep Bulk deformation processes:	
(5)	Forging	
(6) First	Bulk deformation processes:	Quiz
examination	Rolling	
	e	
(7)	Bulk deformation processes: Extrusion	Quiz
(0)	Bulk deformation processes:	
(8)	Rod, wire and tube drawing	
(9)	Bulk deformation processes:	Quiz
(9)	Die manufacturing methods	
(10)	Bulk deformation processes:	
(10)	Applications	small related project
(11)	Material removal processes:	
Second	Mechanics of chip formation.	
examination	r i i i i i i i i i i i i i i i i i i i	
(12)	Material removal processes:	Quiz
(12)	Cutting process for production	
	various shapes	
(13)	Material removal processes:	
(13)	Mechanics of grinding	small related project
(14)	Sheet metal forming	
(**)	processes: Shearing	
(15)	Sheet metal forming	Quiz
(10)	processes: Deep drawing	
	formability of sheet metals	
(16)	Modern Manufacturing	
Final	Systems	
	-	
Final Examination	Systems Revision	

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

- 1. De-Garmo, Paul E., Black, J Temple and Kosher, R.A., Materials and Processes in Manufacturing, Mcmillan, latest edition.
- 2. Schey J.A., "Introduction to Manufacturing Processes, Prentice Hall.