

Philadelphia University

Faculty of Engineering - Department of Mechanical Engineering First Semester 2017/2018

Course Information

Title:	Special Topics in Mechanical Engineering (Energy Conversion), 620555	
Prerequisite: Credit Hours	Department Approval	
:	3 Cr. Hours	
Textbook:	Principles of Energy Conversion, by Archie W. Culp, McGraw-Hill, 2 nd ed. (1991)	
References:	Solar Engineering of Thermal Processes, by John Duffie and William Beckman, Wiley, 3 rd . ed., 2006	
Catalog Description:	 Energy classification, resources and utilization; Principal fuels for energy conversion; Production of thermal energy; Fossil fuel systems; Environmental impact of power plant operation; Production of electrical energy (by direct energy conversion); Wind energy; Energy storage and conservation. Introduction to nuclear energy; geothermal energy. 	
Instructor:	Prof. Ali A. Badran, Room E741, Tel.2338 e-mail: <u>abadran@philadelphia.edu.jo</u> Office hours: Sun, Tue. Thurs: 10:00- 11:00	

Course Topics

Week	Topics	Chepter in Text	Sections
1, 2	1-Energy classification, resources and utilization.	Chapter 1	Sec 1.1, 1.4, 1.5, 1.7
3, 4	2- Principal fuels for energy conversion.	Chapter 2	
5,6,7	3- Production of thermal energy.	Chapter 3	
8,9,10	4- Fossil fuel systems.	Chapter 4	
11,12	5- Environmental impact of power plant operation.	Chapter 6	
	7- Introduction to wind and solar energy	Ch. 2 + Ch. 7	2.5, 7.3.3
13	6- Production of electrical energy(by direct energy conversion	Chapter 8	
14	9- Geothermal energy.	Ch. 1 + Notes	
15	10- Energy storage and conservation.	Ch. 9	
16	11- Introduction to Nuclear energy	Ch.2, 3,5	2.4, 2.4.3, 3.6.5, 3.6.7, 5.2.1, 5.2.2

Course Learning Outcomes and Relation to ABET Student Outcomes:

Upon successful completion of this course, a student should:

SO's	Course Outcomes	
	1. Identify energy consumption and utilization features on the global, regional and local levels.	a, c, e
	2. Predict energy consumption in a certain country given the growth rate is known.	a, c, e
SO3,	3. Figure out various properties, including the heating values for a mixture of gaseous, liquid and solid fuels.	c, e, f
SO5, SO5, SO6,	4. Calculate theoretical and actual air/fuel ratios for the combustion of fuels, especially coals, given their values are known.	c, e, f,
SO7,	5. Select basic draft systems for a power plant.	c, e, i
SO8.	6. Size and select a windmill for a given job.	c, e, i
	7. Size and select a solar collector for a given Job.	c, e, i
	8. Assess environmental impact of power plant operation.	c, e, f, i
	9. Analyze and calculate energy costs for a certain power plant and find the	c, e, f, i
	breakeven point for that plant.	
	10. Estimate boiler efficiency.	c, e, f, i, j

Assessment tools:

Evaluation of students' performance (final grade) will be based on the following:

- **Exams:** Two written exams will be given, each will cover about 6-weeks of lectures
- **Quizzes**: 15-minute quizzes will be given to the students during the semester. These quizzes will cover material based on homework problems given to students earlier.
- **Homework**: Problem sets will be given to students. Homework should be solved individually but they do not have to be turned-in. Instead, students should be able to sit for a quiz in one of the homework problems, or a problem similar to it..
- Participation: The grade for participation will be based on quizes

Final Exam: The final exam will cover all the class material.

Grading policy:

First Exam	20%
Second Exam	20%
Quizzes and participation	20%
Final Exam	40%
Total:	100%

Attention to basic attendance policy:

Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse, acceptable to and approved by the Dean of the relevant college/faculty, shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.