

Philadelphia University Faculty of Engineering Department of Mechanical Engineering First Semester, 2010/2011

Course Syllabus

Course Title: CAD/CAM	Course code: 640581
Course Level: 5	Course prerequisite (s) and/or co requisite (s):
	Programmable logic control (640475)
	Credit hours: 3

Course description:

To introduce the students with the fundamentals of: Computer aided Design and Computer Aided Manufacturing.

Course objectives: At completing this course the student should:

- Understand the basic concept of computer aided design.
- Programming CNC with different programming languages.

Course components

• Books (title , author (s), publisher, year of publication)

Introduction to CNC, Games Valentino, 4th edition.

Teaching methods:

- 2 Lectures a week
- 1-2 Appointments for tutorials and discussion after each chapter

Learning outcomes:

- Knowledge and understanding
 - The student should be able to understand the basic concept of computer aided design and programming CNC machines.
- Cognitive skills (thinking and analysis).

The students should link the concepts that they are learning with the real applications by giving live examples where the subject concepts are applied.

• Communication skills (personal and academic).

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects
- Quizzes.
- Home works
- Final examination: 50 marks

Allocation of Marks			
Assessment Instruments	Mark		
First examination	20		
Second examination	20		
Final examination: 50 marks	50		
Reports, research projects, Quizzes, Home works, Projects	10		
Total	100		

Documentation and academic honesty

• Documentation style (with illustrative examples)

Students will be given the key solution after each exam to compare with their answers as well as the marking scheme. If any has an objection then the supervisor should consider it based on the key solution and the marking scheme. If the student has extra marks then he it should be added to him

• Avoiding plagiarism.

The university has strict rules about plagiarism and it will be considered where it is necessary.

Course/module academic calendar

week	Basic and support material to be covered	Homework/reports and their due dates
(1)	Introduction	
(2)	Fundamental of CAD systems	
(3)	Fundamental of CAM systems	
(4)	Introduction to CNC machines	
(5)	Tooling for hole milling and lathe machines	
(6)	Tooling for hole milling and	Quiz at the end of the
First	lathe machines	chapter.
examination		
(7)	Word address programming and	Quiz at the end of the
	hole operations programs	chapter.
(8)	Programming linear profile	
(9)	Programming contouring profile	Quiz

(10)	Programming with tool diameter compensation	Ouiz at the end of the
(11) Second examination	Programming with tool diameter compensation	chapter.
(12)	subprograms	Quiz at the end of the chapter.
(13)	CNC lathe programming	Small valated president
(14)	CNC lathe programming	Sman related project.
(15)	Introduction to master CAM, GIBBS CAM and CAD/CAM station	
(16) Final Examination	Introduction to master CAM, GIBBS CAM and CAD/CAM station	

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

- 1. CAD/CAM: Computer Aided Design and Manufacturing by Groover, Prentice Hall.
- 2. Understanding CAD\CAM by Bowman, Howard Co.
- 3. Computer Aided Manufacturing by Ssu-Pin Wang.
- 4. CAD\CAM by Taylor, Addison Wesley.