

Philadelphia University

Faculty of Engineering and Technology, Department of Mechatronics Engineering. Course Syllabus

Course Details: Title: Modeling and Simulation (0640327). Dynamics and Vibrations(640233)+Engineering Analysis(1) (650260). **Prerequisite: Credit Hours:** 3-credit hours (16 weeks per semester, approximately 45 contact hours). **Textbook:** "System Dynamics", Katsuhiko Ogata, 4th Edition, Pearson Prentice Hall, 2004. "Modeling and Analysis of Dynamic Systems", Ramin S. Esfandiari, Bei Lu-**References:** 3rd Edition-CRC Press, 2018 "System Dynamics", Palm III, William, 2nd Edition, McGraw-Hill Science, 2009. **Description:** Modeling definition. Modeling of different physical systems (mechanical, fluid, thermal and electrical). Differential and Laplace equations. State-space representation. Computer simulation techniques (applications using MATLAB Program). System response and analysis. Website: http://www.philadelphia.edu.jo/academics/malkhawaldeh/ Dr. Mustafa Awwad Al-Khawaldeh **Instructor:** Email: malkhawaldeh@philadelphia.edu.jo Office: Engineering building, room 6407. Ext.: 2304 Office hours: Sunday, Tuesday: 11:15-12:45

Course Outlines:

Week	Торіс	Assignments
1	Introduction to system dynamics	
2	The Laplace Transform, Inverse Laplace Transformation	
3	Solving Linear, Time-Invariant Differential Equations	
4	Modeling of Mechanical Systems: Introduction to Mechanical Elements	
5	Rotational motion, Translational-rotational motion.	Homework.1
6	Modeling of Electrical Systems.	
7	Mathematical Modeling of Electromechanical Systems, D.C. servomotors	
8	Mathematical Modeling of Operational-Amplifier Systems	
9	Mechanical-Electrical Analogies	
10	Mathematical Modeling of Liquid-Level Systems	Homework.2
11	Modeling of Pneumatic Systems	
12	Modeling of Thermal Systems	
13	Linearization of Nonlinear Systems	
14	State-Space Approach to Modeling Dynamic Systems	
15	Time-Domain Analysis of Dynamic Systems Using MATLAB	
16	Transient-Response Analysis of Second-Order Systems Using MATLAB	

Course Learning Outcomes with reference to ABET Student Outcomes:

1.	Understand fundamentals of system dynamics.	
2.	Study the Laplace, inverse Laplace transformation.	
3.	Obtain a mathematical Model of different physical systems (mechanical, fluid, thermal and electrical).	
4.	Analyze the transient-response of second-order systems applying MATLAB.	
5.	Study new technologies in modeling mechatronics systems.	

Upon successful completion of this course, student should:

Assessment Guidance:

Evaluation of the student performance during the semester (total final mark) will be conducted according to the following activities:

Midterm Exams:	The students will be subjected to mid-term scheduled written exams. The exam covers materials given in lectures in the previous1-7 weeks.	
Quizzes :	Two quizzes will be given during the semester.	
Homework:	Tutorials sheets will be handed out to the students and homework should be solved individually and submitted before or on a set due date.	
Final Exam:	The students will undergo a scheduled final exam at the end of the semester covering the whole materials taught in the course.	

Grading policy:

Mid-Term Exam	30%
Assignments and Homework	30%
Final Exam	40%
Total:	100%

Attendance policy:

The semester has in total 45 credit hours. Total absence hours from classes and tutorials must not exceed 15% of the total credit hours. Exceeding this limit without a medical or emergency excuse approved by the deanship will prohibit the student from sitting the final exam and a zero mark will be recorded for the course.