

Course Title: Electronics and Transducers (0640412), Fourth Year. Prerequisite: 1- Instruments and Transducers (640242). 2- Electrical Circuit Lab (610216).

Credit Hours: 1-credit hours (14 weeks per semester, approximately 45 contact hours). **Course description:** Measurement principles; Analogue signal conditioning: Displacement and Level transducers; Digital transducers; Force and Strain transducers; Temperature transducers; interfacing microcontroller systems with sensors and actuators (DC motors); Programming microcontroller (PIC & Arduino); DC Motor Control; Programming C-Language.

Website:http://www.philadelphia.edu.jo/academics/ssalah/Instructor:Instructor: Eng. Samer Zaid Sartawi.Email:ssalah@philadelphia.edu.joOffice:Engineering building, room 6411. ext: 2346

Laboratory Outlines:

Week	Exp.#	Experiment Name	
1	1	Introduction.	
2	2	(OP AMP + Experimental data analysis).	
3	3	Simulation of measurement systems using Protues.	
4	4	Investigation of strain gauges characteristics.	
5	5	Investigation of LVDT Characteristics.	
6	6	Investigation of RTD characteristics	
7		Free laboratory.	
8	7	Investigation of Thermistors Characteristics part one	
9	8	Investigation of Thermistors Characteristics part two	
10	9	Proximity Transducers characteristics.	
11	10	Potentiometric Transducer characteristics.	
12	11	Ultrasonic transducer characteristics.	
13		Free laboratory.	
14		Final Exam.	

Course Learning Outcomes with reference to ABET Student Outcomes:

Upon successful completion of this Laboratory, student should:

1.	Study and use the OP AMP circuits in transducer signal conditioning.	[6]
2.	Use Proteus software as simulator for transducers circuits.	[6]
3.	Build the conditioning circuits of different sensors and transducers.	[6]
4.	Measure transducers response which include; hysteresis, non linearity, sensitivity, and the repeatability.	[6]
5.	Find the transfer function of different transducers using measured data.	[6]

Assessment Guidance:

Evaluation of the student performance during the semester (total final mark) will be conducted according to the following activities:

- **Reports:** The students should deliver full printed report after finishing the experiment within one week; the delivering is due at the beginning of the class. Late two days report will be graded from half of the total mark. Other late reports(over 2 days) will not be accepted.
- **Quizzes:** 3-quizzes of 10-minutes will be conducted during the semester. The materials of the quizzes are set by the lecturer.
- **Final Exam:** The students will undergo a scheduled final exam at the end of the semester covering the whole materials taught in the course.

Grading policy:

Reports	30%
Quizzes	30%
Final Exam	40%
Total:	100%

Final Exam Category	Mark
Theoretical part	10
Practical part	30
Total	40

Report (Marks distribution):

Report part	Ideal mark	Your mark
Cover page	0.25	
Objective	0.25	
Theory	0.25	
Apparatus	0.25	
Data	6	
Analysis	7	
Discussion	3	
Conclusion	3	
Tatal	20	•

Total

References Books:

1. "Measurement, Instrumentation, and Sensors Handbook" J.G. Webster, CRC Press 1999. **6.** "Transducers and Instrumentation" D.V.S Murty, Prentice Hall 1995.

2. "Instrumentation, Measurement, and Analysis" B.C. Nakra, Second Edition McGrawHill 2004.

3. "Measurement & Instrumentation Principles", Alan S. Morris, Elsevier, 2001.

4. "Measurement Systems: Application and Design", Ernest O. Doebelin, Fifth Edition, McGraw Hill, 2003.