

Philadelphia University Faculty of Engineering Department of Mechanical Engineering Second semester, 2008/2009

	<u>Course Syllabus</u>	
Course Title: Internal Combustion Engines	Course code: 620541	
Course Level: 5th year	Course prerequisite (s) and/or co requisite (s): Thermodynamics II, 620342	
Lecture Time: 11:10-12:10 S,T,W	Credit hours: 3	

_		Academic Staff Specifics		
Name Rank	Office Number and	Office	E-mail Address	
	Location	Hours		
Dr. A. Saleh	Assis.	E732 Department of	9:30-	asaleh@philadelphia.edu.je
	Prof.	Mechatronics	11:00	

Course module description:

This course provides the material needed for the basic understanding of the operation and design of internal combustion engines.

Course module objectives:

At completing this module the student should be able to:

- Recognize the basic types of internal combustion engines.
- Estimate the performance of internal combustion engines
- Know the fundamental thermochemistry as applied to fuels.
- Follow the various operational processes from intake to exhaust.
- Be familiar with cooling and lubrication systems.

Course/ module components

 Books (title, author (s), publisher, year of publication) Title: Engineering Fundamentals of the Internal Combustion Engine Author: W. W. Pulkrabek Publisher: Prentice Hall Edition : 2d, 2004

- Support material (s) (vcs, acs, etc).
- Study guide (s) (if applicable)
- Homework and laboratory guide (s) if (applicable).

Teaching methods:

- 3 Lectures a week
- 1-2 Appointments for tutorials and problem solving after each chapter

Learning outcomes:

- Knowledge and understanding The student should be able to understand the different processes that takes place in IC engines and to know the different methods followed in designing the same engines.
- Cognitive skills (thinking and analysis). Some assigned projects aim to develop the thinking and analysis capability of the students
- Communication skills (personal and academic). Not applicable
- Practical and subject specific skills (Transferable Skills). Some practical projects assigned aim to develop the practical capability of the students: The students were divided in teams; each team had been chosen a portion of hydrogen internal combustion engine plant to be designed.

<u>Assessment instruments</u>

- Short reports and/ or presentations, and/ or Short research projects
- Quizzes.
- Home works
- Final examination: 50 marks

Allocation of Marks			
Assessment Instruments	Mark		
First examination	20		
Second examination	20		
Final examination: 50 marks	50		
Reports, research projects, Quizzes, Home works, Projects	20		
Total	100		

Documentation and academic honesty

- Documentation style (with illustrative examples)
- Protection by copyright
- Avoiding plagiarism.

Course/module academic calendar

week	Basic and support material to be covered	Homework/reports and their due dates
(1)	Introduction to	
	Internal	
	Combustion Engines	
(2)	Engine Design and	
	Operating	
	Parameters	
(3)	Tutorial and	
	problem solving	
(4)	Air-Standard Cycles	
(5)	Air-Standard Cycles	
(6)	Tutorial and	
	problem solving	
(7)	Thermochemistry	Determination of fuel
	and Fuels	properties
(8)	Tutorial and	
	problem solving	
(9)	Air and fuel	
Mid Examination	induction	
(10)	Air and fuel	
	induction	
(11)	Tutorial and	
	problem solving	
(12)	Fuel Motion Within	
	Combustion	
	Chamber	
(13)	Tutorial and	
	problem solving	
(14)	Combustion in SI	
	and CI Engines	
(15)	Tutorial and	Design of hydrogen
	problem solving	engine
(16)		
Final Examination		

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

- Internal Combustion Fundamentals, By John B. Heywood
- Internal Combustion Engine in Theory and Practice, By P. L. Ballaney
- Internal Combustion Engines and Air Pollution, By F. D. Obert
- Internal Combustion Engines, By V. Ganesan, 10th ed.

Journals

- Journal of Heat Transfer
- Journal of Fluids Engineering Journal of Heat Transfer
- Journal of Engineering for Gas Turbines and Power

Websites

http://www.amazon.com/Engineering-Fundamentals-Internal-Combustion-Engine/dp/