

Philadelphia University Faculty of Engineering Department of Mechanical Engineering Second semester, 2008/2009

	<u>Course Syllabus</u>	
Course Title:	Course and a: 640231+620211	
Engineering Mechanics :Statics		
Course Level: 2th year	Course prerequisite (s) and/or co requisite (s):	
Course Lever. 2011 year	Mathematics	
Lecture Time: 12-13:10	Credit hourse 3	
Sun/Tues/Thurs	Creat nours: 5	

		Academic Staff Specifics		
Name I	Rank	Office Number and Location	Office	E-mail Address
	IVAIIK		Hours	
Dr. A. Qandil	Assis. Prof	E Department of Mechatronics	13:30-	Oand4@Hotmail it
			15:00	Vanu+@110tillall.it

Course module description:

This course provides the material needed for the basic understanding of the theory and applications of rigid body statics. This course is standard requirement in any engineering as well as in most engineering technology disciplines.

Course module objectives:

- Understand Statics Fundamentals
- Analyze Forces and Calculate Equilibriums for rigid bodies
- Develop Free Body Diagrams
- Calculate centers, moments of inertia, and work
- Gain a working insight into the design and analysis of practical static structures.

Method of instruction:

Lectures, class demonstrations, chalkboard, digital and digitized media, presentation, discussions, in class problem solving, computer simulation, homework assignment of problem.

Course/ module components

- Books Title: Engineering Mechanics: Statics Author: R.CHibbeler Publisher: Prentice Hall Edition : Tenth edition, 2004
- Support material (s) Lecture notes soft copy (vcs, acs, etc).
- Study guide (s)
- Homework and laboratory guide (s).

Teaching methods:

- 3 Lectures a week
- 1-2 Appointments for tutorials and problem solving after each chapter

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects
- Quizzes.
- Home works
- Final examination: 50 marks

Allocation of Marks				
Assessment Instruments	Mark			
First examination	20			
Second examination	20			
Final examination: 50 marks	50			
Reports, research projects, Quizzes, Home	10			
works, Projects				
Total	100			

Learning outcomes:

- 1. Provide the best learning environment and concepts and technical education needed to achieve the above indicated student objectives and for a career in Engineering Technology.
- 2. Demonstrate the knowledge and dexterity to perform effectively in the workplace with the communication skills needed to deal with fellow workers, clients and public.
- 3. Emphasize the understanding of societal implications of engineering decisions and design in both a local and global context and the ethical training to evaluate those implications.
- 4. Encourage class participation, questions and class related discussions.
- 5. Incite critical analysis in the solution of problem and application of innovation in technology.
- 6. Stimulate team work inside and outside the classroom.
- 7. Keep students informed of their progress during the semester.
- 8. Provide support inside and outside the classroom.

Documentation and academic honesty

- Documentation style (with illustrative examples)
- Protection by copyright Avoiding plagiarism.

Course/module academic calendar

	Basic and support material to	Homework/reports
week	be covered	and their due dates
(1)	General Principles	Selected typical
	Tutorial and problem solving	Problems
(2)	Force Vectors	Selected typical
	Tutorial and problem solving	Problems
(3)	Equilibrium of a Particle	Selected typical
	Tutorial and problem solving	Problems
(4)	Force System Resultants	Selected typical
	Tutorial and problem solving	Problems
(5)	Force System Resultants	Selected typical
	Tutorial and problem solving	Problems
(6)	Equilibrium of a Rigid Body	Selected typical
	Tutorial and problem solving	Problems
(7)	Equilibrium of a Rigid Body	Selected typical
Mid Examination	Tutorial and problem solving	Problems
(8)	Structural Analysis	Selected typical
	Tutorial and problem solving	Problems
(9)	Structural Analysis	Selected typical
	Tutorial and problem solving	Problems
(10)	Internal Forces	Selected typical
	Tutorial and problem solving	Problems
(11)	Friction	Selected typical
Mid Examination	Tutorial and problem solving	Problems
(12)	Center of Gravity and Centroid	Selected typical
	Tutorial and problem solving	Problems
(13)	Center of Gravity and Centroid	Selected typical
	Tutorial and problem solving	Problems
(14)	Moments of Inertia	Selected typical
	Tutorial and problem solving	Problems
(15)	Moments of Inertia	Selected typical
	Tutorial and problem solving	Problems
(16)	Virtual Work	Selected typical
	Tutorial and problem solving	Problems
Final Examination	Tutorial and problem solving	Selected typical
		Problems

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

- Das, Kassimali, Sami, "Engineering Mechanics Statics", IRWIN., 1994.
- James R.Ogden Mechanics: Statics Dynamics (Rea's Problem Solvers) Powells Books
- F.P.Beer, E.R.Johnston.Jr..and E.R.Eisenberg.Vector Mechanics for Engineers- Statics,8 edition,WCB McGraw-Hill,2007

Websites http://www.yourotherteacher.com