

Philadelphia University Faculty of Engineering Department of Mechatrinics Engineering First semester, 2008/2009

	<u>Course Syllabus</u>
Course Title: Thermo-fluids I	Course code: 640343
Course Level: 3d year	Course prerequisite (s) and/or corequisite (s):
	630201,640232
Lecture Time: 08:15-09:45 M, W	Credit hours: 3

		Academic Staff Specifics		
Name Rank	Office Number and	Office	E mail Address	
	Манк	Location	Hours	E-man Auuress
Dr. A. Saleh	Assis.	E732 Department of	9:30-	asalah@nhiladalnhia.adu i
	Prof.	Mechatronics	11:00	asaicn@pinaucipina.cuu.j

Course module description:

The course has the intention to make the student familiar with basic concepts used in thermal science, including behavior of simple pure substances, evaluation of work, heat and power in processes, formulation of conservation laws, and introduction to the Entropy concept

Course module objectives:

At completing this course the student should be able to:

- Identify work , heat transfer and the importance of temperature, pressure and density in a sub system. And find the properties of a substance given a certain property.
- Compute work and heat transfer in a problem.
- Distinguish between the different types of thermodynamic systems
- Apply the entropy concept in simple applications

Course/ module components

• Books (title, author (s), publisher, year of publication) Title: Thermodynamics: An Engineering Approach Author: Yunus A. Cengel, Michael A. Boles Publisher: McGraw-Hill Edition : 6th, 2008

- Support material (s) (vcs, acs, etc).
- Study guide (s) (if applicable)
- Homework and laboratory guide (s) if (applicable).

Teaching methods:

- 3 Lectures a week
- 2-3 Appointments for tutorials and problem solving after each chapter

Learning outcomes:

- Knowledge and understanding The student should know the basic principles of thermodynamics
- Cognitive skills (thinking and analysis). Some projects assigned aim to develop the thinking and analysis capability of the students
- Communication skills (personal and academic). Not applicable
- Practical and subject specific skills (Transferable Skills). Some practical projects assigned aim to develop the practical capability of the students:
 - be familiar with some related software

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects
- Quizzes.
- Home works
- Final examination: 50 marks

Allocation of Marks				
Assessment Instruments	Mark			
First examination	20			
Second examination	20			
Final examination: 50 marks	50			
Reports, research projects, Quizzes, Home	10			
works, Projects				
Total	100			

Documentation and academic honesty

- Documentation style (with illustrative examples)
- Protection by copyright
- Avoiding plagiarism.

Course/module academic calendar

	Basic and support	Homework/reports and
week	material to be	their due dates
	covered	
(1)	Introduction to	
	basic concepts of	
	thermodynamics	
(2)	Energy transfer and	
	analysis	
(3)	Tutorial and	Selected typical
	problem solving	Problems
(4)	First law of	
	Thermodynamics	
	(closed systems)	
(5)	First law of	
	Thermodynamics	
	(closed systems)	
(6)	Tutorial and	Selected typical
	problem solving	Problems
(7)	First law of	
	Thermodynamics	
	(control volumes)	
(8)	First law of	
	Thermodynamics	
	(control volumes)	
(9)	Tutorial and	Selected typical
Mid Examination	problem solving	Problems
(10)	Second law of	
	Thermodynamics	
(11)	Second law of	
	Thermodynamics	
(12)	Tutorial and	Design of simple
	problem solving	thermal systems
(13)	Introduction to	
	'Entropy' concept	
(14)	Introduction to	
	'Entropy' concept	
(15)	Tutorial and	Report: importance of
	problem solving	the Entropy concept
(16)		
Final Examination		

Page 4 of 4

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

- Fundamentals of Classical Thermodynamics by Sonntag. Wiley
- Thermodynamics, By: Holman
- Introduction to Thermodynamics, by: Sonntay
- Basic Engineering Thermodynamics, By: Joel

Journals

- Journal of Heat Transfer
- Journal of Fluids Engineering Journal of Heat Transfer

Websites http://www.mcgrawhill.com/