

# Philadelphia University

Faculty of Engineering and Technology Mechatronics Engineering Department First Semester 2019/2020

## **Course Details:**

| Title:               | Digital Control (0640441), Fourth Year.                                                |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|
| Prerequisite:        | Automatic Control Systems (0640344).                                                   |  |  |  |  |  |
| <b>Credit Hours:</b> | 3-credit hours (16 weeks per semester, approximately 45 contact                        |  |  |  |  |  |
|                      | hours).                                                                                |  |  |  |  |  |
| <b>Class Time:</b>   | 11:10 – 12.00 Sun, Tues, Thur.                                                         |  |  |  |  |  |
| Text Book:           | Digital Control Systems by Benjamin C. Kuo, 1995.                                      |  |  |  |  |  |
| <b>References:</b>   | eferences: 1. Discrete-Time Control Systems, 2 <sup>nd</sup> -ed, K Ogata, Prentice-Ha |  |  |  |  |  |
|                      | Inc., 1995.                                                                            |  |  |  |  |  |
|                      | 2. Digital Control Engineering, 2nd Edition, M. Sami Fadali                            |  |  |  |  |  |
|                      | Antonio Visioli, 2012.                                                                 |  |  |  |  |  |
|                      |                                                                                        |  |  |  |  |  |
| <b>Description:</b>  | Digital Control course will give the necessary acknowledge for                         |  |  |  |  |  |
|                      | implementation of digital techniques for system applications and                       |  |  |  |  |  |
|                      | control design. The course has been prepared taking into account the                   |  |  |  |  |  |
|                      | needs of the student for understanding the design of high                              |  |  |  |  |  |
|                      | performance control models for microcontroller systems.                                |  |  |  |  |  |
| Website:             | http://www.philadelphia.edu.jo/academics/jghaeb/                                       |  |  |  |  |  |
|                      | Dr. Jasim Ghaeb, Associate Professor.                                                  |  |  |  |  |  |
| Instructor:          | Email: jghaeb@philadelphia.edu.jo                                                      |  |  |  |  |  |
|                      | Office: Mechatronic building, room 6407, ext: 2590.                                    |  |  |  |  |  |
|                      | Office hours: Sun, Tues, Thurs: 10:10-11:00, Mon, Wed: 10:00 -11:00.                   |  |  |  |  |  |

### **Course Outlines:**

| Week | Basic and support material to be covered                                            | Assignments     |
|------|-------------------------------------------------------------------------------------|-----------------|
| (1)  | Introduction, Review of continuous control.                                         |                 |
| (2)  | Concept of discrete control systems.                                                |                 |
| (3)  | Sampling theory, Quantization procedure, Quantization error.                        |                 |
| (4)  | Analog to digital and digital to analog conversion, Digital signals and coding.     |                 |
| (5)  | Sampled and Hold device, Mathematical model, Laplace transform of discrete-signals. | Assignment No.1 |
| (6)  | Laplace transform of discrete signals, Fourier transform.                           |                 |

| (7)  | The sampling frequency, Reconstruction of sampling signal, Z-O-H.                                                  | Assignment No.2 |
|------|--------------------------------------------------------------------------------------------------------------------|-----------------|
| (8)  | Discrete- time systems, Transform methods, Z- transform, Properties of Z-<br>transform                             |                 |
| (9)  | Relation between s-plane and z-planes, Mapping method, Z- Transfer function for open-loop system.                  |                 |
| (10) | Z- Transfer function for closed- loop system, Characteristic equation $q(z)$ , Determination of T.Fs using MATLAB. | Assignment No.3 |
| (11) | Stability analysis techniques, Routh Hurwitz criterion for digital systems, Jury stability test.                   |                 |
| (12) | Root- Locus in z-plane of digital control system, Asymptotes, Break away point, The gain parameter.                |                 |
| (13) | Stability in frequency domain, Nyquist stability criterion, Mapping of counters                                    |                 |
| (14) | Frequency response, Bode plot.                                                                                     |                 |
| (15) | Building and simulating of digital control systems using MATLAB.                                                   | Assignment No.4 |
| (16) | Case study of digital control systems.                                                                             |                 |

### <u>Course Learning Outcomes with reference to ABET Student</u> <u>Outcomes:</u>

Upon successful completion of this course, student should:

| 1. | Understand fundamentals of discrete- data systems.                                           | [1]    |
|----|----------------------------------------------------------------------------------------------|--------|
| 2. | Carry out the data conversion, sampling process and quantization.                            | [1]    |
| 3. | Study the discrete-time system operation based on Z-transform.                               | [2, 6] |
| 4. | Practice design and response of digital control systems applying Matrix Laboratory (MATLAB). | [5, 6] |

#### Assessment Guidance:

Evaluation of the student performance during the semester (total final mark) will be conducted according to the following activities:

- **Sub-Exams:** The students will be subjected to two scheduled written exams, first exam and second exam during the semester. Each exam will cover materials given in lectures in the previous 3-4 weeks.
- **Quizzes:** 4-quizzes of10-minutes will be conducted during the semester. The materials of the quizzes are set by the lecturer.
- Homework and Tutorials sheets will be handed out to the students and homework should be solved individually and submitted before or on a set agreed date. Student may be assigned to present project(s).
- **Final Exam:** The students will undergo a scheduled final exam at the end of the semester covering the whole materials taught in the course.

#### **Grading policy:**

| First Exam            | 20%  |  |
|-----------------------|------|--|
| Second Exam           | 20%  |  |
| Quizzes, projects and | 20%  |  |
| homework              |      |  |
| Final Exam            | 40%  |  |
| Total:                | 100% |  |

#### **Attendance policy:**

The semester has in total 45 credit hours. Total absence hours from classes and tutorials must not exceed 15% of the total credit hours. Exceeding this limit without a medical or emergency excuse approved by the deanship will prohibit the student from sitting the final exam and a zero mark will be recorded for the course.