

Philadelphia University Faculty of Engineering Department of Mechatrinics Engineering Second semester, 2008/2009

Course Syllabus

Course Title: Pneumatic and Hydrauli Systems	Course code: 640444	
Course Level: 4 th year	Course prerequisite (s) and/or corequisite (s): Thermo-fluid 2 (640345)	
Lecture Time: 9:10-10:00 S, T, and T	Credit hours: 3	

Academic Staff Specifics

Name Ra	Rank	Office Number and	Office	E-mail Address
	Капк	Location	Hours	
Dr. A. Saleh	Assist.	E732 Department of	10:30-	
	Prof.	Mechatronics	12:30	asaleh@philadelphia.edu.jo

Course module description:

The course aims to teach the students concepts of fluid power control, the components of hydraulic circuits, and hydraulic circuits' analysis and design. It also aims to teach the students pneumatic circuits and electro-pneumatic circuit analysis and design

Course module objectives:

At completing this course the student should be able to:

- Understanding the basic concepts hydraulic and pneumatic control
- understanding the different types and components of hydraulic and pneumatic systems
- understanding the design concepts of hydraulic and pneumatic circuits and their maintenance

Course/ module components

 Books (title , author (s), publisher, year of publication) Title: Fluid power with applications Author: Anthony Esposito
Publisher: Printice Hall
Edition : 6th, 2007

- Support material (s) (vcs, acs, etc).
- Study guide (s) (if applicable)
- Homework and laboratory guide (s) (if applicable).

Teaching methods:

- 3 Lectures a week
- 2-3 Appointments for tutorials and problem solving after each chapter

Learning outcomes:

- Knowledge and understanding The student should know the basic principles of hydraulic and pneumatic systems design
- Cognitive skills (thinking and analysis). Some projects assigned aim to develop the thinking and analysis capability of the students
- Communication skills (personal and academic). Not applicable
- Practical and subject specific skills (Transferable Skills). Some practical projects assigned aim to develop the practical capability of the students: Be familiar with some related software

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects
- Exams and quizzes.
- Home works
- Final examination: 50 marks

Allocation of Marks			
Assessment Instruments	Mark		
First examination	20		
Second examination	20		
Final examination: 50 marks	50		
Reports, research projects, Quizzes, Home works, Projects	10		
Total	100		

Documentation and academic honesty

- Documentation style (with illustrative examples)
- Protection by copyright
- Avoiding plagiarism.

Course/module academic calendar

	Basic and support	Homework/reports and
week	material to be	their due dates
WCCK	covered	then due dates
(1)	Introduction to fluid	
(1)	power and Physical	
	properties of	
	hydraulic fluids	
(2)	, , , , , , , , , , , , , , , , , , ,	
(2)	Energy and power in hydraulic systems	
(3)	Distribution system	
(3)	e e	
	and Flow in pipes Tutorial and	Selected typical
(4)		Selected typical
	problem solving	Problems
(5)	Hydraulic pumps- part I	
(6)	Hydraulic pumps-	
	part II	
(7)	Hydraulic actuators	
	I and motors- part	
(8)	Hydraulic actuators	
	and motors- part II	
(9)	Tutorial and	Selected typical
Mid Examination	problem solving	Problems
(10)	Valves (Pressure,	
	Directional, and	
	flow	
(11)	Hydraulic circuit	
	design and analysis	
(12)	Tutorial and	Project: simulation
	problem solving	design of hydraulic
		system
(13)	Pneumatic	
	components, and	
	pneumatic circuits	
(14)	fluid logic control	Report about fluid logic
	and Electrical	control and Electrical
	controls for fluid	controls for fluid power
	power circuits	circuits
(15)	Tutorial and	Selected typical
	problem solving	Problems
(16)		
Final Examination		

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

- Power Hydraulics, J. Ashby, Printice Hall, 3rd edition
- Hydraulics for Engineering technology, By J. E. Johnson, Edited by Prentice Hall
- Hydraulics and Pneumatics, B A. Parr, Edit. Butterworth Heinemann

Journals

- Journal of Fluids Engineering
- Journal of Engineering for Gas Turbines and Power

Websites