

### Philadelphia University Faculty of Engineering Department of Mechatrinics Engineering Second semester, 2008/2009

|                                    | <u>Course Syllabus</u>                          |  |  |
|------------------------------------|-------------------------------------------------|--|--|
| Course Title: Modeling, Simulation |                                                 |  |  |
| and Interface                      | Course code: (640465)+(630573)                  |  |  |
| Course Levels 4 <sup>th</sup> year | Course prerequisite (s) and/or corequisite (s): |  |  |
| Course Level: 4 year               | 630203, 640451                                  |  |  |
| Lecture Time: 9:45-11:15 M, W      | Credit hours: 3                                 |  |  |

| Academic Stan Specifics |
|-------------------------|
|-------------------------|

| Name       | Rank      | Office Number and<br>Location | Office<br>Hours | E-mail Address           |
|------------|-----------|-------------------------------|-----------------|--------------------------|
| Dr. Ashraf | Assistant | C608 Department of            | 10:00-          | Ashrof salarm@rahas.com  |
| Saleem     | Professor | Mechatronics                  | 11:00           | Asnrai saleem(@yanoo.con |

**Course module description:** 

The course aims to make the student familiar with basic concepts used in the modeling of mechtaronic systems, simulate the models using Matlab/Simulink, and use the PC interface with Labview to control mechatronic systems

**Course module objectives:** 

At completing this course the student should be able to:

- Use different modeling techniques in order to model Mechatronics systems.
- Draw the Block Diagrams for Mechatronics systems.
- Use Simulink and MATLAB to simulate time-domain and frequency domain models.
- Analyze and understand the dynamic system's response.
- Understand system interface concepts.
- Use Simulink to interface Input/Outputs through the PC Ports and DAQ cards.
- Use Labview for simulation and interface.

**Course/ module components** 

 Books (title , author (s), publisher, year of publication) Title: Mechatronics: An Integrated Approach Author:Clarence W. Silva Publisher: CRC Press Edition : first, 2005

- **Mechatronics** by Dan Nesculescu, Prentice Hall 2002
- **Mechatronics** by Bolton, Prentice Hall, 2<sup>nd</sup> edition

## **Teaching methods:**

- 3 Lectures a week
- 2-3 Appointments for tutorials and problem solving after each chapter
- 3-4 Appointments for software simulation at lab.

### Learning outcomes:

• Knowledge and understanding The student should know the basic principles of Modeling and Simulation of Mechanical, Electrical, Thermal and Fluid systems.

- Cognitive skills (thinking and analysis). Some projects assigned aim to develop the thinking and analysis capability of the students
- Communication skills (personal and academic). Not applicable
- Practical and subject specific skills (Transferable Skills). Some practical projects assigned aim to develop the practical capability of the students:

- be familiar with some related software as MATLAB.

### **Assessment instruments**

- Short reports and/ or presentations, and/ or Short research projects
- Quizzes.
- Home works
- Final examination: 50 marks

| Allocation of Marks                                          |      |  |  |
|--------------------------------------------------------------|------|--|--|
| Assessment Instruments                                       | Mark |  |  |
| First examination                                            | 20   |  |  |
| Second examination                                           | 20   |  |  |
| Final examination: 50 marks                                  | 50   |  |  |
| Reports, research projects, Quizzes, Home<br>works, Projects | 10   |  |  |
| Total                                                        | 100  |  |  |

# **Documentation and academic honesty**

- Documentation style (with illustrative examples)
- Protection by copyright
- Avoiding plagiarism.

# Course/module academic calendar

|                          | <b>Basic and support</b>  | Homework/reports and |
|--------------------------|---------------------------|----------------------|
| week                     | material to be            | their due dates      |
|                          | covered                   |                      |
| (1)                      | Introduction to           |                      |
|                          | Modeling                  |                      |
|                          | Techniques                |                      |
| (2)                      | State-space               |                      |
|                          | representation            |                      |
| (3)                      | State models from         |                      |
|                          | linear graphs             |                      |
| (4)                      | Illustrative              | Selected typical     |
|                          | examples                  | Problems             |
| (5)                      | Mechanical systems        |                      |
| (6)                      | Examples on               | Selected typical     |
|                          | Mechanical systems        | Problems             |
| (7)                      | Electrical systems        |                      |
| (8)                      | Examples on               | Selected typical     |
|                          | <b>Electrical Systems</b> | Problems             |
| (9)                      | Tutorial and              | Selected typical     |
| Mid Examination          | problem solving           | Problems             |
| (10)                     | Fluid systems             |                      |
| (11)                     | Thermal systems           |                      |
| (12)                     | Tutorial and              | Selected typical     |
|                          | problem solving           | Problems             |
| (13)                     | Simulation using          |                      |
|                          | MATLAB and                |                      |
|                          | SIMULINK                  |                      |
|                          | programming               |                      |
| (14)                     | Illustrative              |                      |
|                          | examples                  |                      |
| (15)                     | Data Acquisition          |                      |
|                          | Systems                   |                      |
| (16)                     |                           |                      |
| <b>Final Examination</b> |                           |                      |

### **Expected workload:**

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

### **Attendance policy:**

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

**Module references** 

Books

- Mechatronics by Dan Nesculescu, Prentice Hall 2002
- Mechatronics by Bolton, Prentice Hall, 2<sup>nd</sup> edition

Journals

- Journal of Modeling and Simulation
- Journal of Mechanical and Electrical systems modeling.

Websites

http://ocw.mit.edu/OcwWeb/web/home/home/index.htm http://www.ebooksquad.com