

 Dr. Nabil R. Adam
 At Rutgers University in Newark, New Jersey, Dr. Nabil R. Adam is a Professor of Computers and

Information Systems; the Founding Director of the Rutgers University Center for Information Management,
Integration and Connectivity (CIMIC); past Director of the Meadowlands Environmental Research Institute;
and the Director of the Laboratory for Water Security. Dr. Adam has published numerous technical papers in
such journals as IEEE Transactions on Software Engineering, IEEE Transactions on Knowledge and Data
Engineering, ACM Computing Surveys, Communications of the ACM, Journal of Management Information
Systems, and International Journal of Intelligent and Cooperative Information Systems. He has co-
authored/co-edited ten books. Dr. Adam is the co-founder and the Executive-Editor-in-Chief of the
International Journal on Digital Libraries and serves on the editorial board of a number of journals including
Journal of Management Information Systems, the Journal of Electronic Commerce, and the Journal of
Electronic Commerce Research and Applications. He is also the co-founder and past chair of the IEEE
Technical Committee on Digital Libraries.

Dr. Adam’s research work has been supported by over $15 million from various federal and state agencies,
including the National Science Foundation (NSF), the National Security Agency (NSA), NOAA, the U.S.
Environmental Protection Agency, the Defense Logistics Agency (DLA), the National Library of Medicine,
the New Jersey Meadowlands Commission, and NASA.

He has been invited lecture at several national and international institutions/forum including: The first US-China
International Workshop on Digital Government Research and Practice (IntDG 2006), Beijing,
China, Sponsored by U.S. National Science Foundation, the Chinese Academy of Sciences, and the National
Natural Science Foundation of China, 2006; The Seventh World Congress on the Management of e-Business,
Halifax, Canada, 2006; ETRIC, International Conference on Emerging Trends in Information and
Communication Security, Germany 2006; IEEE Workshop Working Together: R&D Partnership in Homeland
Security, the National Conference on Digital Government Research, 2005; Digital Library Colloquium Speaker
Series, Carnegie Mellon School of Computer Science AND Lab of Education and Research on Security Assured
Information Systems, University of Pittsburgh, 2005; Hungarian US R&D Workshop - Information Society
technology and Research Challenges, Sponsored by NSF and ELTE Ithaka, Budapest, Hosted by Hungarian
Ministry for Information &Telecommunications and Ministry of Education, Hungary, 2004; The National
Conference for Digital Government Research, May 2002; The National Research Council’s Workshop
on Coping with Increasing Demands on Government Data Centers, 2002; The IEEE/ARL/NASA
Workshop on Information Assurance, 2001; The International Symposium on Government and E-
commerce Development, Ningbo, China, April 2001, Co-sponsored by the United Nations Department
of Economic and Social Affairs, the Ningbo Municipality, the Chinese Academy of Science, the
Chinese Academy of Engineering, the Ministry of Information Industry of China, and Zhejiang
University of China.

Contact:
 E-mail: adam@adam.rutgers.edu
 Telephone: +1 973 353-5239/1014

A-PDF MERGER DEMO

http://www.a-pdf.com

Tutorial on Semantic Web and Web Services

The development of the World Wide Web facilitates the advertisement and access of content over
the web. The Semantic Web enriches the WWW with content-based descriptions and makes it
easier to discover and publish information by machines. The main idea behind the Semantic Web
is to make the meaning explicit, thereby allowing machines to process and integrate Web
resources intelligently. Beyond enabling quick and accurate web search, this technology may also
allow the development of intelligent internet agents and facilitate communication between a
multitude of heterogeneous web-accessible devices and services.

The tutorial will be composed of two main parts; the first part shall provide the attendees a
detailed understanding of the aims and challenges of Semantic Web, the design of various
Semantic Web languages (such as XML, RDF, SHOE, and OWL), the role of ontologies and how
to develop them, the knowledge acquisition problem, techniques for scalable reasoning,
integrating heterogeneous data sources, web-based agents, and issues in developing semantic-
aware applications, especially important for knowledge management applications.; the second
part of the tutorial will focus on a specific application and will show how Web Services
technology and SOA challenges are resolved with semantics.

Target Audience
The tutorial targets academics, industrial researchers, and developers interested in the next
generation web, Semantic Web. Although no specific knowledge is demanded as a pre-requisite
for attending the tutorial, basic knowledge about the Web, ontologies, and Service-oriented
Architectures will allow attendees to better understand and follow the tutorial.

Topics

Today's Web; From Today's Web to the Semantic Web: Examples; Semantic Web Technologies;
A Layered Approach

STRUCTURED WEB DOCUMENTS IN XML
Introduction; The XML Language; Structuring; Namespaces; Addressing and Querying XML
Documents; Processing; Summary

DESCRIBING WEB RESOURCES RDF
Introduction; RDF: Basic Ideas; RDF: XML-Based Syntax; RDF Schema: Basic Ideas; RDF
Schema: The Language; RDF and RDF Schema in RDF Schema; An Axiomatic Semantics for
RDF and RDF Schema; A Direct Inference System for RDF and RDFS; Querying in RQL;
Summary

WEB ONTOLOGY LANGUAGE: OWL
Introduction; The OWL Language; Examples; OWL in OWL; Future Extensions; Summary

LOGIC AND INFERENCE: Rules
Introduction; Example of Monotonic Rules: Family Relationships; Monotonic Rules: Syntax;
Monotonic Rules: Semantics; Nonmonotonic Rules:
Motivation and Syntax; Example of Nonmonotonic Rules: Brokered Trade; Rule Markup in
XML: Monotonic Rules; Rule Markup in XML: Nonmonotonic Rules; Summary

ONTOLOGY ENGINEERING
Introduction; Constructing Ontologies Manually; Reusing Existing Ontologies; SUMO; Using
Semiautomatic Methods; On-To-Knowledge Semantic Web Architecture

APPLICATIONS
Introduction; Web Services; OWL-S/WSDL-S; Other Scenarios

CONCLUSION AND OUTLOOK
How It All Fits Together; Some Technical Questions

Semantic Web -
Ontology and OWL

NabilNabil R. AdamR. Adam

2

Outline

Ontology

• Definition
• Making Use of Ontology, in the Context of Semantic Web, to

Make Inferences
• Ontology Language - OWL
• Ontology Development

3

Ontology – A Basic Component of the SW

• Two databases may use different identifiers for what is in fact
the same concept, such as zip code.
– For a program to compare or combine info across the two databases, it has to

know that these two terms are being used to mean the same.

– Ideally, the program must have a way to discover such
common meanings for whatever databases it encounters

• Ontologies provide a solution to this problem
• An ontology

– is a formal conceptualization of a domain that is usable by a
computer.

– aims to make Web resources more readily accessible to
automated processes

• by adding information about the resources that describe or
provide Web content

4

Ontology: Classes, Subclasses, Relations& Properties

• Formally defines the relations among terms.
– The most typical kind of ontology for the Web has a taxonomy

and a set of inference rules.
– The taxonomy defines classes of objects and relations among

them.
• e.g., an address may be defined as a type of location, and city

codes may be defined to apply only to locations, and so on.
– Classes, subclasses and relations among entities are a very

powerful tool for Web use.
– We can express a large number of relations among entities by

assigning properties to classes and allowing subclasses to
inherit such properties.

• With ontology, solutions to terminology problems begin to emerge.
– The meaning of terms or XML codes used on a Web page can

be defined by pointers from the page to an ontology
– How about If I point to an ontology that defines addresses as

containing a zip code and you point to one that uses postal
code?

– This can be resolved if ontologies (or other Web services)
provide equivalence relations

5

Ontology Vs. XML?

• Note: An ontology differs from an XML schema?
– Ontology is a knowledge representation, not a message

format.
– Most industry based Web standards consist of a

combination of message formats and protocol specifications.
• e.g., "Upon receipt of this PurchaseOrder message,

transfer Amount dollars from Account From to AccountTo
and ship Product.“

• But the specification is not designed to support reasoning
outside the transaction context.

• For example, we won't in general have a mechanism to
conclude that because the Product is a type of
Chardonnay it must also be a white wine.

6

Ontology and OWL

• In order to write an ontology that can be interpreted unambiguously
and used by software agents we require

– a syntax and formal semantics for OWL.

• OWL is a vocabulary extension of RDF
• OWL depends on constructs defined by RDF, RDFS, and XML

Schema datatypes.
• One advantage of OWL ontologies will be

– the availability of tools that can reason about them.
– Tools will provide generic support that is not specific to the

particular subject domain.

7

XML – RDF - OWL
• XML- Provides a syntax for structured doc.s.

– But, no semantic constraints on the meaning of these doc.s
• XML Schema- a language for restricting the structure of XML

doc.s and also extends XML with data types
• RDF – A data model for objects (resources) and relations among

them
– Provides a simple semantics for this data model and

• These data models can be represented in XML syntax
• RDF Schema – A vocabulary for describing properties and

classes of RDF resources,
– With semantics for generalization-hierarchies of such

properties and classes
• OWL- Adds more vocabulary for describing properties and

classes, including:
– Relations among classes, e.g., disjointness; cardinality, e.g.,

exactly 1; equality; rich typing of properties; characteristics of
properties, e.g., symmetry; and enumerated classes.

Making Use of Ontology, in the Context of SW
Making Inferences

Wine – Meal Course Example

9

Example - Wine

• Wine
The ontology defines the concept

of a wine
According to the specification, a

wine is a potable liquid
produced by at least one maker
of type winery, and is made
from at least one type of grape
(such grapes are restricted to
wine grapes elsewhere in the
ontology.)

The full text of the declaration
additionally stipulates that a
wine comes from a region that
is wine-producing and, most
importantly to the agent, that a
wine has
four properties: color, sugar,
body, and flavor.

<rdfs:Class rdf:ID="WINE">
<rdfs:subClassOf rdf:resource="#POTABLE-LIQUID"/>
<rdfs:subClassOf>
<daml:Restriction>

<daml:onProperty rdf:resource="#MAKER"/>
<daml:minCardinality>

1
</daml:minCardinality>

</daml:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<daml:Restriction>
<daml:onProperty rdf:resource="#MAKER"/>
<daml:toClass rdf:resource="#WINERY"/>

</daml:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#GRAPE-SLOT"/>
<daml:minCardinality>

1
</rdfs:Class>

(full text)

10

Example – Meal Course
• Meal Course
The concept of a meal course

underlies pairing of a food
with a wine.

Each course is a consumable
thing comprising at least
one food and at least one
drink, the latter of which is
stipulated to be a wine.

When the user selects a type
of course, or an individual
food that gets mapped to
a type of course,

the agent will
consult that course
definition for restrictions
on the constituent food or
wine.

All such course types map
back to this concept, like
objects to their
superclasses in OO
programming.

One such example follows...

<rdfs:Class rdf:ID="MEAL-COURSE">
<rdfs:subClassOf rdf:resource="#CONSUMABLETHING"/>
<rdfs:subClassOf>
<daml:Restriction>

<daml:onProperty rdf:resource="#FOOD"/>
<daml:minCardinality>

1
</daml:minCardinality>

</daml:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<daml:Restriction>

<daml:onProperty rdf:resource="#FOOD"/>
<daml:toClass rdf:resource="#EDIBLE-THING"/>
</daml:Restriction>
</rdfs:subClassOf>

<rdfs:subClassOf>
<daml:Restriction>

<daml:onProperty rdf:resource="#DRINK"/>
<daml:minCardinality>

1

11

Example – Pasta with Spicy Red Sauce
Pasta with Spicy Red

Sauce
• Suppose the user

selected fra diavolo, or
pasta with spicy red
sauce directly.

• The concept of such a
food is defined
elsewhere in the
ontology, but most
relevant here is the
notion of a pasta with
spicy red sauce course.

• Here the concept is
defined as a type of
meal course where the
food must be a pasta
with spicy red sauce.

<rdfs:Class rdf:ID="PASTA-WITH-SPICY-RED-SAUCE-COURSE">
<daml:intersectionOf rdf:parseType="daml:collection">

<rdfs:Class rdf:about="#MEAL-COURSE"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#FOOD"/>
<daml:toClass rdf:resource="#PASTA-WITH-SPICY-RED-SAUCE"/>

</daml:Restriction>
</daml:intersectionOf>
<rdfs:subClassOf

rdf:resource="#DRINK-HAS-RED-COLOR-RESTRICTION"/>
<rdfs:subClassOf

rdf:resource="#DRINK-HAS-FULL-BODY-RESTRICTION"/>
<rdfs:subClassOf

rdf:resource="#DRINK-HAS-STRONG-FLAVOR-RESTRICTION"/>
<rdfs:subClassOf

rdf:resource="#DRINK-HAS-DRY-SUGAR-RESTRICTION"/>
</rdfs:Class>

•Furthermore, such courses must be a subclass of those with specific
restrictions on the properties: of their wines:

• #DRINK-HAS-RED-COLOR-RESTRICTION and the like appear
elsewhere, specifying the properties of candidate wines in a
straightforward manner.

12

Example – Chateau Lafite Rothschild Pauillac
Pauillac
• One wine that

matches the above
restrictions is the
Pauillac

• This individual wine
is simply defined
as a Pauillac
whose maker is
Chateau Lafite
Rothschild.

• Together with other
statements in the
ontology, this
allows the reasoner
to infer many
additional facts:
– It is a Medoc

wine from
Bordeaux, in
France, and
that it is red,
etc.

<rdf:Description
rdf:ID="CHATEAU-LAFITE-ROTHSCHILD-PAUILLAC">

<rdf:type rdf:resource="#PAUILLAC"/>
<MAKER rdf:resource="#CHATEAU-LAFITE-ROTHSCHILD"/>

</rdf:Description>

<rdfs:Class rdf:ID="PAUILLAC">
<rdfs:subClassOf rdf:resource="#FULL-BODY-RESTRICTION"/>

<rdfs:subClassOf rdf:resource="#STRONG-FLAVOR
RESTRICTION"/>
<rdfs:subClassOf rdf:resource=

"#CABERNET-SAUVIGNON-INDIVIDUAL-GRAPE-SLOT-
RESTRICTION"/>
<rdfs:subClassOf rdf:resource=

"#GRAPE-SLOT-MAX-CARDINALITY-1-RESTRICTION"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<rdfs:Class rdf:about="#MEDOC"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#REGION"/>
<daml:hasValue rdf:resource="#PAUILLAC-INDIVIDUAL"/>

</daml:Restriction>
</daml:intersectionOf>

</rdfs:Class>

13

Reasoner

• Following the above example through the ontology reveals
– a straightforward logical path for pairing
– the Pauillac with the selected course.

• Because it was specified in a standardized, machine-readable
format,
– it is a straightforward task for any compliant automated

reasoner

Ontology Language - OWL

15

OWL Sublanguages

The OWL language provides three increasingly expressive sublanguages:
• OWL Lite supports a classification hierarchy and simple constraint features

– It should be simpler to provide tool support for OWL Lite than: OWL-DL,
OWl Full, and provide a quick migration path for thesauri and other
taxonomies.

• OWL DL supports users who want the maximum expressiveness without
losing computational completeness (all entailments are guaranteed to be
computed) and decidability (all computations will finish in finite time) of
reasoning systems.
– OWL DL is so named due to its correspondence with description logics,

OWL DL has desirable computational properties for reasoning systems.
• OWL Full Provides maximum expressiveness and the syntactic freedom of

RDF with no computational guarantees.

• Each of these sublanguages is an extension of its simpler predecessor,
both in what can be legally expressed and in what can be validly
concluded.

• Folowing are the details of each of these languages.

16

An OWL Ontology: Basic Elements

• Classes
• Properties
• Instances of classes
• Relationships among instances

17

Data Aggregation and Privacy
• OWL's ability to express ontological info about instances appearing in

multiple documents supports linking of data from diverse sources in a
principled way.

• The ability to express equivalences using
– owl:sameAs

• can be used to state that seemingly different individuals are actually
the same.

– Owl:InverseFunctionalProperty (see detials later)
• can also be used to link individuals together.
• e.g., if a property such as
• "SocialSecurityNumber" is an
• owl:InverseFunctionalProperty,
• then two separate individuals could be inferred to be identical based

on having the same value of that property.
• When individuals are determined to be the same by such means,

info about them from different sources can be merged.
• This aggregation can be used to determine facts that are not directly

represented in any one source.
• The ability of the SW to link info from multiple sources is a desirable and

powerful feature that can be used in many applications.
• However, this does have potential for abuse -- pottential privacy

implications

18

Simple Named Classes

• Each user-defined class is implicitly a subclass of owl:Thing.
• OWL also defines the empty class, owl:Nothing.
• Domain specific root classes are defined by simply declaring a

named class,
– For our sample wines domain, we create three root classes:
– Winery, Region, and ConsumableThing.

• <owl:Class rdf:ID="Winery"/>
• <owl:Class rdf:ID="Region"/>
• <owl:Class rdf:ID="ConsumableThing"/>
• Note that we have only said that there exist classes that have been

given these names, indicated by the 'rdf:ID=' syntax.

19

Ontology Definition: Distributed and Incremental
• Ontology definitions may be
• incremental and distributed.
• The syntax

– rdf:ID="Region"
• is used to introduce a name, as part of its definition. This is the
rdf:ID attribute similar to the familiar ID attribute defined by XML.

• Within this document,
– the Region class can now be referred to using

• #Region, e.g. rdf:resource="#Region".
• Other ontologies may reference this name using its complete form,

– "http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine#Region".

• Another form of reference uses the syntax
– rdf:about="#Region" to extend the definition of a resource.
– This use of the rdf:about="&ont;#x" syntax

• is a critical element in the creation of a distributed ontology.
• It permits the extension of the imported definition of x without

modifying the original document and supports the incremental
construction of a larger ontology.

20

Class Constructor
• The fundamental taxonomic constructor for classes is

– rdfs:subClassOf
• If X is a subclass of Y, then every instance of X is also an instance

of Y.
• The rdfs:subClassOf relation is transitive.
• If X is a subclass of Y and Y a subclass of Z then X is a subclass

of Z.
<owl:Class rdf:ID="PotableLiquid">
<rdfs:subClassOf rdf:resource="#ConsumableThing" />

...
</owl:Class>
• Defines PotableLiquid (liquids suitable for drinking) to be a subclass of

ConsumableThing.
• Both of these classes can be defined in a separate ontology that

– would provide the basic building blocks for a wide variety of food and
drink ontologies

• The food ontology includes a number of classes, e.g., Food,
EdibleThing, MealCourse, and Shellfish, etc.

21

A Class Definition

• A class definition has two parts:
– 1) a name introduction or reference; and 2) a list of restrictions.
– Each of the immediate contained expressions in the class definition

further restricts the instances of the defined class. Instances of the
class belong to the intersection of the restrictions.

• Below is a simple definition for the class Wine. Wine is a PotableLiquid.
<owl:Class rdf:ID="Wine">

<rdfs:subClassOf rdf:resource="&food;PotableLiquid"/>
<rdfs:label xml:lang="en">wine</rdfs:label> Lable is similar to a comment
<rdfs:label xml:lang="fr">vin</rdfs:label>

...
</owl:Class>
<owl:Class rdf:ID="Pasta"> the definition of Pasta as an EdibleThing

<rdfs:subClassOf rdf:resource="#EdibleThing" />
...
</owl:Class>
The rdfs:label entry provides an optional human readable name for this class.

Presentation tools can make use of it. The "lang" attribute provides
support for multiple languages.

22

Individuals
• Indiviudlas – members of classses
• An individual is minimally introduced by declaring it to be a member of a

class.
<Region rdf:ID="CentralCoastRegion" /> Note the following is identical in

meaning to the example.
<owl:Thing rdf:ID="CentralCoastRegion" />
<owl:Thing rdf:about="#CentralCoastRegion">

<rdf:type rdf:resource="#Region"/>
</owl:Thing>
• Here, rdf:type is an RDF property that ties an individual to a class of

which it is a member.
• Note:

– We have decided that CentralCoastRegion (a specific area) is
member of Region, the class containing all geographical regions.

• Note: “Region” and “CentralCoastRegion” need NOT to be in the same
file once the names are exttended with a URI.
– They can be imported and augmented, creating derived ontologies.
– Thus being able to design Web ontologies to be distributed.

• Another example of an individual in the Grape ontology, we can define
an individual: the Cabernet Sauvignon grape varietal. It is an individual
since it denotes a single grape varietal

23

Class vs. an Individual
• A class is simply a name and collection of properties that describe

a set of individuals.
• Individuals are the members of a set
• Thus classes should correspond to naturally occurring sets of

things in a domain of discourse, and
– individuals should correspond to actual entities that can be

grouped into these classes.
• Distinction between classes and invdividuals

– Levels of representation: In certain contexts something that is
obviously a class can itself be considered an instance of
something else,

• e.g., in the wine ontology we have the notion of a Grape,
which is intended to denote the set of all grape varietals.
CabernetSauvingonGrape is an example of an instance of
this class, as it denotes the actual grape varietal called
Cabernet Sauvignon. However, CabernetSauvignonGrape
could itself be considered a class, the set of all actual
Cabernet Sauvignon grapes.

24

Properties
• A property is a binary relation.
• Two types of properties are distinguished:

– datatype properties,
– object properties.

• Restrictions on properties, can be accomplished through
– The domain and range can be specified. The property can be defined to be a

specialization (subproperty) of an existing property.
<owl:ObjectProperty rdf:ID="madeFromGrape">
<rdfs:domain rdf:resource="#Wine"/>
<rdfs:range rdf:resource="#WineGrape"/>

</owl:ObjectProperty>
• Here, madeFromGrape has a domain of Wine and a range of WineGrape,

– i.e., it relates instances of the class Wine to instances of the class
WineGrape.

– Multiple domains means that the domain of the property is the intersection of
the identified classes (and similarly for range).

• Note: In OWL, a sequence of elements without an explicit operator represents an
implicit conjunction

<owl:ObjectProperty rdf:ID="course">
<rdfs:domain rdf:resource="#Meal" />

<rdfs:range rdf:resource="#MealCourse" />
</owl:ObjectProperty>. the property course ties a Meal to a MealCourse.

25

Properties (Cont.)
• In OWL, a range may be used to infer a type.

– For example, given:
<owl:Thing rdf:ID="LindemansBin65Chardonnay">
<madeFromGrape rdf:resource="#ChardonnayGrape"/>

</owl:Thing>
– we can infer that LindemansBin65Chardonnay is a wine because the

domain of madeFromGrape is Wine

26

Properties Hierarchy
• Properties, like classes, can be arranged in a hierarchy.

– For example, given:

<owl:Class rdf:ID="WineDescriptor" />
<owl:Class rdf:ID="WineColor">

<rdfs:subClassOf rdf:resource="#WineDescriptor" />

...
</owl:Class>
We can have:

<owl:ObjectProperty rdf:ID="hasWineDescriptor">
<rdfs:domain rdf:resource="#Wine" />
<rdfs:range rdf:resource="#WineDescriptor"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasColor">

<rdfs:subPropertyOf rdf:resource="#hasWineDescriptor" />
<rdfs:range rdf:resource="#WineColor" />

...

</owl:ObjectProperty>

Relates wines to their color&
componenets of their taste,
including sweetness, body and
flavor

hasColor is a subproperty of
hasWinDescriptor property,

with a range further restricted
to WineColor.

27

Properties (Cont.)
• It is now possible to expand the definition of Wine to include the notion

that a wine is
– made from at least one WineGrape.

• As with property definitions, class definitions have multiple subparts that
are implicitly conjoined.

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid"/>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#madeFromGrape"/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

...
</owl:Class>

28

Properties (Cont.)
• We can now describe the class of Vintages, discussed previously
<owl:Class rdf:ID="Vintage">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#vintageOf"/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">
1

</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
The property vintageOf ties a Vintage to a Wine.
<owl:ObjectProperty rdf:ID="vintageOf">
<rdfs:domain rdf:resource="#Vintage" />
<rdfs:range rdf:resource="#Wine"/>
</owl:ObjectProperty>

29

Properties and Data Types
• Datatype properties may range over RDF literals or simple types defined in

accordance with XML Schema datatypes.
• OWL uses most of the built-in XML Schema datatypes.
• References to these datatypes are by means of the URI reference for the

datatype, http://www.w3.org/2001/XMLSchema.
Examples include:
• xsd:string; xsd:normalizedString; xsd:boolean; xsd:decimal;

xsd:floatxsd:double; xsd:integer; xsd:nonNegativeInteger; xsd:positiveInteger;
xsd:nonPositiveInteger;

• See OWL Web Ontology Lang Guide for more details
• Example,
<owl:Class rdf:ID="VintageYear" />

<owl:DatatypeProperty rdf:ID="yearValue">
<rdfs:domain rdf:resource="#VintageYear" />
<rdfs:range rdf:resource="&xsd;positiveInteger"/>

</owl:DatatypeProperty>
The yearValue property relates VintageYears to positive integer values. We

introduce the hasVintageYear property, which relates a Vintage to a
VintageYear

30

Property Characteristics

• Following are property characteristics which provide a
powerful mechanism for enhancing reasoning about a
property:

• Transitivity Property
• Symmetric Property
• Functional Property
• Inverse of Property
• Inverse of Functional Property

31

Property Characteristics - Transitivity

• If a property, P, is specified as transitive then
– for any x, y, and z: P(x,y) and P(y,z) implies P(x,z)

• The property locatedIn is transitive.
<owl:ObjectProperty rdf:ID="locatedIn">
<rdf:type rdf:resource="&owl;TransitiveProperty" />
<rdfs:domain rdf:resource="&owl;Thing" />
<rdfs:range rdf:resource="#Region" />

</owl:ObjectProperty>

<Region rdf:ID="SantaCruzMountainsRegion">
<locatedIn rdf:resource="#CaliforniaRegion" />

</Region>

<Region rdf:ID="CaliforniaRegion">
<locatedIn rdf:resource="#USRegion" />

</Region>
• Because the SantaCruzMountainsRegion is locatedIn the

CaliforniaRegion, then it must also be locatedIn the USRegion, since
locatedIn is transitive.

32

Property Characteristics - Symmetry

• If a property, P, is tagged as symmetric
– then for any x and y: P(x,y) iff P(y,x)

• The property adjacentRegion is symmetric, while locatedIn is not.
•
<owl:ObjectProperty rdf:ID="adjacentRegion">
<rdf:type rdf:resource="&owl;SymmetricProperty" />
<rdfs:domain rdf:resource="#Region" />
<rdfs:range rdf:resource="#Region" />

</owl:ObjectProperty>

<Region rdf:ID="MendocinoRegion">
<locatedIn rdf:resource="#CaliforniaRegion" />
<adjacentRegion rdf:resource="#SonomaRegion" />

</Region>
• The MendocinoRegion is adjacent to the SonomaRegion and vice-versa.

The MendocinoRegion is located in the CaliforniaRegion but not vice
versa.

33

Property Characteristics - Functional

• If a property, P, is tagged as functional
– then for all x, y, and z: P(x,y) and P(x,z) implies y = z

• E.g., in our wine ontology,
– hasVintageYear is functional.

• A wine has a unique vintage year, i.e., a given individual
Vintage can only be associated with a single year using the
hasVintageYear property.

<owl:Class rdf:ID="VintageYear" />

<owl:ObjectProperty rdf:ID="hasVintageYear">
<rdf:type rdf:resource="&owl;FunctionalProperty" />
<rdfs:domain rdf:resource="#Vintage" />
<rdfs:range rdf:resource="#VintageYear" />

</owl:ObjectProperty>

34

Property Characteristics – Inverse of

• If a property, P1, is tagged as the owl:inverseOf P2,
– then for all x and y: P1(x,y) iff P2(y,x)

• Note that the syntax for owl:inverseOf takes a property name as
an argument. A iff B means (A implies B) and (B implies A).

<owl:ObjectProperty rdf:ID="hasMaker">
<rdf:type rdf:resource="&owl;FunctionalProperty" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="producesWine">
<owl:inverseOf rdf:resource="#hasMaker" />

</owl:ObjectProperty>
1. Wines have makers, which in the definition of Wine are restricted

to Winerys. Then each Winery produces the set of wines that
identify it as maker.

35

Property Restrictions – AllValuesFrom
• allValuesFrom and someValuesFrom, are local to their containing class

definition.
• The owl:allValuesFrom restriction requires that

– for every instance of the class that has instances of the specified
property, the values of the property are all members of the class
indicated by the owl:allValuesFrom clause.

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid" />
...
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:allValuesFrom rdf:resource="#Winery" />

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>
The maker of a Wine must be a Winery. The allValuesFrom restriction is on

the hasMaker property of this Wine class only. Makers of Cheese are not
constrained by this local restriction.

36

Property Restrictions – SomeValuesFrom
• owl:someValuesFrom is similar to owl:allValuesFrom.

– If we replaced owl:allValuesFrom with owl:someValuesFrom in the
example above, it would mean that

• at least one of the hasMaker properties of a Wine must point to an
individual that is a Winery.

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:someValuesFrom rdf:resource="#Winery" />

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>

• The difference between the two formulations is the difference between a
universal and existential quantification.

37

allValuesFrom and someValuesFrom

• Note:
• The difference between the two formulations is the difference

between a universal and existential quantification.
Relation Implications
allValuesFrom -

For all wines, if they have makers, all the makers are wineries.
someValuesFrom

For all wines, they have at least one maker that is a winery.

• The first does not require a wine to have a maker. If it does have
one or more, they must all be wineries.

• The second requires that there be at least one maker that is a
winery, but there may be makers that are not wineries.

38

Property Restrictions - Cardinality
• In addition to specifying the minimum cardinality (as shown earlier), we

can also specify the exact # of elements in a relation.
Example, below specifies Vintage to be a class with exactly 1 VintageYear.
<owl:Class rdf:ID="Vintage">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasVintageYear"/>
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
• Earlier, we specified hasVintageYear to be a functional property, which is

the same as saying that
– every Vintage has at most one VintageYear.
– This application of that property to Vintage using the cardinality

restriction asserts something stronger, that every Vintage has exactly
one VintageYear.

• owl:maxCardinality can be used to specify an upper bound.
owl:minCardinality can be used to specify a lower bound.

• In combination, the two can be used to limit the property's cardinality to a
numeric interval

39

Property Restrictions - hasValue
• hasValue allows us to specify classes based on the existence of

particular property values.
– Hence, an individual will be a member of such a class whenever at

least one of its property values is equal to the hasValue resource.
<owl:Class rdf:ID="Burgundy">
...
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasSugar" />
<owl:hasValue rdf:resource="#Dry" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
• Here we declare that all Burgundy wines are dry,

– i.e., their hasSugar property must have at least one value that is
equal to Dry.

• As for allValuesFrom and someValuesFrom, this is a local restriction. It
holds for hasSugar as applied to Burgundy.

40

Reusing & Sharing Ontologies: Ontology Mapping

• To achieve maximum impact,
– Ontologies need to be widely shared.

• Tominimize the intellectual effort in developing an ontology
– Ontologies need to be re-used.

• If you can find an existing ontology that has already undergone
extensive use and refinement, it makes sense to adopt it.
– For example, we might adopt a date ontology from one source

and a physical location ontology from another and then extend
the notion of location to include the time period during which it
holds.

• Much of the effort of developing an ontology is devoted to
– hooking together classes and properties in ways that maximize

implications.

41

Ontology Mapping

• It will be challenging to merge a collection of ontologies –
while maintaing consistency.

• Tool support will almost certainly be required to maintain
consistency.

– Equivalence among Classes and Properties
– Identity among individuals
– Different Individuals

• See OWL web Ontology Language Guide for more details

42

Complex Classes – Owl DL

• Provides constructors with which to form classes
– Set Operators – intersectionOf; unionOf; ComplementOf
– Enumerated Classes – oneOf
– Disjoint Classes – disjointWith

Ontology Development

44

ONTOLOGY EDITING ENVIRONMENTS

• Protege

• Ontolingua

• Chimera

Example

45

STEPS OF DEVELOPING ONTOLOGY

1. Determining the domain and scope of the ontology
2. Reusing existing ontologies
3. Enumerating important terms in the ontology
4. Defining the classes and the class hierarchy
5. Defining the slots (properties) of classes
6. Defining the facets of the slots
7. Creating instances

46

1-DETERMINING THE DOMAIN AND THE SCOPE

• What is the domain that the ontology will cover?

– Newspaper

• For what type of questions the information in the ontology
should provide answers?

– What will be the content of newspaper?
– What are the phone numbers of columnists?

• Who will use the application of ontology?

– Newspaper Organization

47

2-REUSING EXISTING ONTOLOGIES

• Refining and extending existing resources

• Becomes requirement if our system needs to interact with existing
applications using ontologies

• Libraries of reusable ontologies
– Ontolingua ontology library

• http://www.ksl.stanford.edu/software/ontolingua/

– DAML ontology library

• http://www.daml.org/ontologies/

48

3-ENUMERATING IMPORTANT TERMS

• Making a list of important terms and their properties that need to be explained to users or
we would like to talk about

• Newspaper
– Content
– Number of Pages
– Page

• Author
• Content
• Layout information

49

4-DEFINING CLASSES AND THE HIERARCHY

• Possible approaches to develop a class hierarchy
– Top-down Approach

• superclass subclass
– Bottom-up Approach

• subclass superclass
– Combination Approach

• defining more important concepts, then generalizing and
specializing them by using both approaches

• None of the approaches is better than the others
• Approach choice depends on the personal preference

Example

50

5-DEFINING SLOTS (PROPERTIES) OF CLASSES

51

6-DEFINING BORDERS OF SLOTS (PROPERTIES)

• Slot Cardinality:
– defines number of values a slot can have
– single cardinality (one value)
– multiple cardinality (more than one value)

• Slot value type:
– String
– Number (Integer, Floating)
– Boolean (True, False)
– Enumerated (flavor: strong, moderate, delicate)
– Instance : defines allowed classes from which instances can come

Example

52

7-Creating Instances

1. Choosing a class
2. Creating an individual instance

3. Filling in the slot values

Example

53

ENSURING CORRECT CLASS HIERARCHY

• Is a relation

– an employee is a person
– a person may not be an employee

• Synonyms for the same concept do not represent
different classes

– worker== employee
• Transitivity of the hierarchical relations

– Columnist Employee, Employee Person,
Columnist Person

• Columnist is the direct subclass of Employee
• Employee is the direct subclass of Person
• Columnist is the indirect subclass of Person

54

SIBLINGS IN A CLASS HIERARCHY

• Direct subclasses of the same superclass

• Number of siblings

– 1< number of siblings < 1000

– one sibling: modeling problem, incomplete ontology,
unnecessary class

– more than thousand: need for intermediate categories

55

WHEN TO INTRODUCE NEW CLASS

• Introduce new class if subclass :
– has additional properties superclass does not have
– has restrictions different from those of superclass

• overriding

• Classes in terminological hierarchies do not have to introduce new properties
– classification of diseases

• Previous class definitions by the domain experts

• Property or a new class?
– Red Wine, White Wine (important)
– Red House, Blue House

56

57

STANDARDS FOR NAMING

• Defining standards for naming makes ontology much more understandable and avoids modeling
mistakes

• Using capital letter for class name and lowercase letter for slot
– Employee. name

• Deciding whether to use singular or plural names
– Author or Authors

• Avoiding attaching strings like class, slot or property
– Employee Class, name property

• Avoiding abbreviations
• All subclasses should either include or not include the name of superclass

EXAMPLES

59Return Back

60

Top Down

Combination

Bottom Up

Return Back

61
Return Back

62

Return Back

