
 1

Philadelphia University

Faculty of Information Technology

Department of Computer Science

First semester, 2008/2009

Course Syllabus

Course code: 750112
Course Title:

Programming Fundamentals

Course prerequisite (s) and/or corequisite(s):

none
Course Level: 1

Credit hours: 3 Lecture Time:

Academic

Staff

Specifics

E-mail Address Office Hours

Office

Number

and

Location

Rank Name

Course/Module Description:

This module focuses on problem solving strategies and the use of algorithmic language to describe

such problem solving. It introduces the principles of procedural programming, data types, control

structures, data structures and functions, data representation on the machine level. Various problems

are considered to be solved using C-like procedural programming language.

Course/Module Objectives:

This module aims to introduce computer programming and emphasis in problem solving on the

fundamentals of structured design using the principles of Top Down problem solving strategy

(divide and conquer). This includes development, testing, implementation, documentation.

The module also aims to explore the logic of programming via the algorithm concepts and

implement them in programming structures including functions, arrays, strings, and pointers.

Course/ module components

 2

• Textbook:

D.S. Malik , Thomson, C++ Programming: From Problem Analysis to Program Design, Third

Edition, Course Technology, 2007

• Supporting material(s): Lectures handouts

Teaching methods:
Duration: 16 weeks, 80 hours in total

Lectures: 32 hours (2 hours per week),

Tutorials: 16 hours (1 per week),

Laboratories: 32 hours, 2 per week

Learning outcomes:

• Knowledge and understanding

1- Understand the fundamental programming constructs.

3- Understand and write searching and sorting techniques.

4- Understand a typical C-like program environment.

• Cognitive skills (thinking and analysis).

1- Be able to understand and analysis any problem and derive its solution.

2- Be able to develop algorithms.

• Communication skills (personal and academic).

1- Be able to work as a team

• Practical and subject specific skills (Transferable Skills).

1- Be able to write C-like programs including searching and sorting techniques.

Assessment instruments

Allocation of Marks

Mark Assessment Instruments

15% First examination

15% Second examination

40% Final examination

30% Lab works, Quizzes, and tutorial contributions

100% Total

 3

 Course/Module Academic Calendar

Week Basic and support material to be covered Homework/reports and

their due dates

(1)

Problem Solving: process, Analyze (requirement,

Design algorithm, Tracing algorithm, Example,

Design problems) Tutorial 1

Lab work #1
(Get started with C language

environment program editing,

compiling, executing, debugging

with PW 1)

(2) Problem Analysis: Algorithm discovery, Algorithm

design strategies, Stepwise refinement, Control

requirements, Tutorial 2

Lab work #1
 (PW 2)

(3)
Implementing algorithm, Conclusion, Tutorial 3 Lab work #3

(PW 3)

(4)

Data Definition Structures: Types, constants,

variables, Expressions: Arithmetic, Logical;

Precedence rules; Tutorial 3

Control Structures: Sequencing; Input and

output statements; Assignment statement;

Tutorial 4

Lab work #4

(Data types, Sequencing,

Assignment operations)

(5)

Control Structures: Selection: one-way (if ..

then), two-way (if .. then .. else), multiple

(switch); Tutorial 5

Lab work #5

(if and switch statements)

(6)
Control Structures: Repetition (while structure);

Tutorial 6

Lab work #6

(While statement)

(7)

First

examination

Control Structures: Repetition (do while for);

Tutorial 7
Lab work #7

(while and for statements)

(8)

Control Structures: Combination; Tutorial 8 Lab work #8

(combination of selection &

repetition programming)

(9)
Functions: Parameters definition and passing

(functions depth look); prototypes; Tutorial 9
Lab work #9

(function definition in C)

(10) Functions: Parameters definition and passing
(Scope: local and global variables); Tutorial 10

Lab work #10

(programs with functions)

(11) Data Structures: One and two dimensional arrays;
Tutorial 11

Lab work #11

(programs with arrays)

(12)

Second

examination

Abstract data type: Records (struct definition

statement); Strings (use of main operations:
Concatenate, string copy, compare, etc.); Tutorial 12

Lab work #12

(programs with struct)

(13)

Strings; Files (use of main operations of a

sequential file: open, reset, rewrite, read, write,

eof); Tutorial 13

Lab work #13

(programs with strings)

(14) Files; Pointers; Tutorial 14
Lab work #14

(programs with pointers &

files)

(15)

Pointers; Tutorial 15; Lab work #15

(Comprehensive assignment

covers all mentioned topics)

(16)

Final

Examination

Review and final Exam
Lab work #16

(Revision)

 4

Expected workload:
On average students need to spend 3 hours of study and preparation for each 50-minute

lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit

without a medical or emergency excuse acceptable to and approved by the Dean of the relevant

college/faculty shall not be allowed to take the final examination and shall receive a mark of zero

for the course. If the excuse is approved by the Dean, the student shall be considered to have

withdrawn from the course.

Module references

Students will be expected to give the same attention to these references as given to the Module

textbook(s)

1. Friedman Frank and Koffman Elliot B., "Problem Solving, Abstraction and Design using C++",

Addison Wesley, Fourth Edition. 2004

2. Jeri R. Hanly and Elliot B. Koffman, Problem Solving and Program Design in C, Pearson

Education, Inc., ISBN: 0-321-21055-7,

3. Deitel & Deitel, C++ How to Program, Prentice-Hall, 2001.

4. A. Lambert Kenneth and Nance Douglas W., "Understanding Programming and Problem

Solving With C++", PWS Publishing Compny, Fourth Edition. 1996

5. Forouzan, B. A. & R. F. Gilberg. "Computer Science: A Structured Programming Approach

using C", Second Edition, Pacific Grove, CA: Brooks/Cole, 2001

6. Bruce Eckel, "Thinking in C++", Second Edition, Prentice Hall, 2000.

7. Herbert Schildt, "Teach Yourself C++", Third Edition, McGraw-Hill. 1998

Website(s):
• www.cee.hw.zc.uk/~pjbk/pathways/cpp1/cpp1.html

• www.edm2.com/0507/introcpp1.html

• www.doc.ic.ac.uk/~wjk/C++intro

• www.cprogramming.com/tutorial.html

• www.cs.umd.edu/users/cml/cstyle/ellemtel-rules.html

• www.deakin.edu.au/~agoodman/Ctutorial.html

• www.tldp.org/howto/c++programming.howto.html

• www.vb-bookmark.com/cpptutorial.html

DOCUMENTATION FOR PROGRAMS:

(All programming assignments must include at least the following comment lines)

/*TASK: Identify what the program will accomplish */

/* */

/*WRITTEN BY: */

/* */

/*DATE: List creation & modification dates */

/* */

/*VARIABLES: List and give what each represents */

/* */

/*INPUT: Identify the input parameters: Give examples */

/* */

 5

/*OUTPUT: Identify the expected output: Give examples */

/* */

/*ALGORITHM: Briefly describe the algorithm used*/

#include <stdio.h>

main ()

{ … }

(If your program includes any function modules, each function needs to be documented)

/*TASK: Identify what the function accomplishes */

/* */

/*DATE: List creation and modification dates */

/* */

/*WRITTEN BY: */

/* */

/*VARIABLES: List names and what each represents */

/* */

/*INPUT: Identify the input parameters, if any. Give examples */

/* */

/*OUTPUT: Identify the output. Give examples */

/* */

/*ALGORITHM: Briefly describe the algorithm used */

int function1()

 { … }

