Course Syllabus

<table>
<thead>
<tr>
<th>Course Title: Advanced Computer Architecture</th>
<th>Course code: 750431</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Level: 4</td>
<td>Course prerequisite(s) and/or corequisite(s): 711231</td>
</tr>
<tr>
<td>Lecture Time:</td>
<td>Credit hours: 3</td>
</tr>
</tbody>
</table>

Academic Staff Specifics

<table>
<thead>
<tr>
<th>Name</th>
<th>Rank</th>
<th>Office Number and Location</th>
<th>Office Hours</th>
<th>E-mail Address</th>
</tr>
</thead>
</table>

Course Description:
This module focuses on advanced computer architectures and low-level system software such as pipelined and Multiprocessor systems.

Course Objectives:
The aim of this module is to emphasize on the concept of a complete system consisting of asynchronous interactions between concurrently executing hardware components and device driver software in order to illustrate the behavior of a computer system as a whole.

Course Components
- Review of Computer Organization and Architecture
- RISC-Architecture
- Processors:
- Memory Hierarchy
- Buses and Arbitration
- Multiprocessor Memory Architectures
- Multiprocessor Interconnection Networks
- Peripheral Devices: Disk Array; Video/Audio Devices.

Text book:
Title: Advanced Computer Architecture: Parallelism, Scalability, programmability.
Author: K. Hwang.
Publisher: McGraw Hill, 1993
In addition to the above, the students will be provided with handouts by the lecturer.

Teaching Methods:
Duration: 16 weeks, 48 hours in total
Lectures: 40 hours (2-3 per week)
Tutorial: 4 hours (1 per 3 weeks)
Seminars: 4 hours (last 2 weeks)

Learning Outcomes:
- **Knowledge and understanding**
 - Understand the advanced concepts of computer architecture.
 - Exposing the major differentials of RISC and CISC architectural characteristics.
- **Cognitive skills (thinking and analysis).**
 - Investigating modern design structures of Pipelined and Multiprocessors systems.
- **Communication skills (personal and academic).**
 - Become acquainted with recent computer architectures and I/O devices, as well as the low-level language required to drive/manage these types of advanced hardware.
- **Practical and subject specific skills (Transferable Skills).**
 - Preparing selected reports that imply some emergent topics supporting material essence.

Assessment Instruments

<table>
<thead>
<tr>
<th>Allocation of Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Instruments</td>
</tr>
<tr>
<td>First examination</td>
</tr>
<tr>
<td>Second examination</td>
</tr>
<tr>
<td>Final Exam (written unseen exam)</td>
</tr>
<tr>
<td>Final Project (defended)</td>
</tr>
<tr>
<td>Reports, Assignments, Quizzes, Home works</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

* Make-up exams will be offered for valid reasons only with consent of the Dean. Make-up exams may be different from regular exams in content and format.

Practical Submissions
The assignments that have work to be assessed will be given to the students in separate documents including the due date and appropriate reading material.

Documentation and Academic Honesty
Submit your home work covered with a sheet containing your name, number, course title and number, and type and number of the home work (e.g. tutorial, assignment, and project).

Any completed homework must be handed in to my office (room IT ---) by 15:00 on the due date. After the deadline “zero” will be awarded. You must keep a duplicate copy of your work because it may be needed while the original is being marked.
You should hand in with your assignments:
1- A printed listing of your test programs (if any).
2- A brief report to explain your findings.
3- Your solution of questions.

For the research report, you are required to write a report similar to a research paper. It should include:
- Abstract: It describes the main synopsis of your paper.
- Introduction: It provides background information necessary to understand the research and getting readers interested in your subject. The introduction is where you put your problem in context and is likely where the bulk of your sources will appear.
- Methods (Algorithms and Implementation): Describe your methods here. Summarize the algorithms generally, highlight features relevant to your project, and refer readers to your references for further details.
- Results and Discussion (Benchmarking and Analysis): This section is the most important part of your paper. It is here that you demonstrate the work you have accomplished on this project and explain its significance. The quality of your analysis will impact your final grade more than any other component on the paper. You should therefore plan to spend the bulk of your project time not just gathering data, but determining what it ultimately means and deciding how best to showcase these findings.
- Conclusion: The conclusion should give your reader the points to “take home” from your paper. It should state clearly what your results demonstrate about the problem you were tackling in the paper. It should also generalize your findings, putting them into a useful context that can be built upon. All generalizations should be supported by your data, however; the discussion should prove these points, so that when the reader gets to the conclusion, the statements are logical and seem self-evident.
- Bibliography: Refer to any reference that you used in your assignment. Citations in the body of the paper should refer to a bibliography at the end of the paper.

• Protection by Copyright
1. Coursework, laboratory exercises, reports, and essays submitted for assessment must be your own work, unless in the case of group projects a joint effort is expected and is indicated as such.
2. Use of quotations or data from the work of others is entirely acceptable, and is often very valuable provided that the source of the quotation or data is given. Failure to provide a source or put quotation marks around material that is taken from elsewhere gives the appearance that the comments are ostensibly your own. When quoting word-for-word from the work of another person quotation marks or indenting (setting the quotation in from the margin) must be used and the source of the quoted material must be acknowledged.
3. Sources of quotations used should be listed in full in a bibliography at the end of your piece of work.

• Avoiding Plagiarism.
1. Unacknowledged direct copying from the work of another person, or the close paraphrasing of somebody else's work, is called plagiarism and is a serious offence, equated with cheating in examinations. This applies to copying both from other students' work and from published sources such as books, reports or journal articles.
2. Paraphrasing, when the original statement is still identifiable and has no acknowledgement, is plagiarism. A close paraphrase of another person's work must have an acknowledgement to the source. It is not acceptable for you to put together unacknowledged passages from the same or from different sources linking these together with a few words or sentences of your own and changing a few words from the original text: this is regarded as over-dependence on other sources, which is a form of plagiarism.
3. Direct quotations from an earlier piece of your own work, if not attributed, suggest that your work is original, when in fact it is not. The direct copying of one's own writings qualifies as plagiarism if the fact that the work has been or is to be presented elsewhere is not acknowledged.

4. Plagiarism is a serious offence and will always result in imposition of a penalty. In deciding upon the penalty the Department will take into account factors such as the year of study, the extent and proportion of the work that has been plagiarized, and the apparent intent of the student. The penalties that can be imposed range from a minimum of a zero mark for the work (without allowing resubmission) through caution to disciplinary measures (such as suspension or expulsion).

Course Academic Calendar

<table>
<thead>
<tr>
<th>Week</th>
<th>Basic and support material to be covered</th>
<th>Homework/reports and their due dates</th>
</tr>
</thead>
</table>
| (2) | Computer Architecture:
 Computer Components.
 Classification of computer architectures.
 Performance of computer architecture. | Tutorial 1 |
| (3) | RISC-Architecture:
 RISC versus CISC Controversy.
 Characteristics Of RISC-Architectures. | |
| (4) | RISC Pipelining:
 Pipelining with Regular Instructions.
 Optimization of Pipelining. | Assignment 1 |
| (5) | Processors:
 Advanced Processor Technology.
 RISC Scalar Processors. | |
| (6) | First Exam
 Vector Processing Principles.
 Vector Processor Model.
 Vector Instruction Types. | Tutorial 2 |
| (7) | Superscalar Processors.
 VLIW Processors. | |
| (8) | Memory Hierarchy:
 Hierarchical Memory Technology.
 Inclusion, Coherence and Locality. | Assignment 2 |
| (9) | Memory Capacity Planning.
 Cache Memory Organization.
 Cache Addressing Models. | |
| (10) | Buses and Arbitration:
 Hierarchical Bus System.
 Backplane Bus Specification. | Tutorial 3 |
| (11) | Bus Arbitration and Control.
 Arbitration, Transaction and Interrupt. | Assignment 3 |
| (12) | Second Exam
 Multiprocessor Memory Architectures:
 Interleaved Memory Organization.
 Shared-Memory Multiprocessors.
 Distributed-Memory Multiprocessors. | Project |
| (13) | Multiprocessor Interconnection Networks:
 System Interconnect architecture.
 Network Properties. | Tutorial 7 |
Interconnection Network Topologies.
 Static Connection Network.
 Dynamic Connection Network.

Peripheral Devices:
 Disk Arrays.
 Video/Audio Devices.

Specimen examination (Optional)

Final Examination

Expected workload:
On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance Policy:
Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module References

Students will be expected to give the same attention to these references as given to the Module textbook(s)