Philadelphia University

[image: image1.png]™

Y,
Y
o \m\“

Faculty of Information technology
Department of Software Engineering
Course Catalogue
December, 2008
CONTENT

CHAPTER 1: Introduction TO CURRICULUM DESIGN

 1.1 Fundamental Concepts

2

 2.1 Format of the Module Coding Adopted

3

CHAPTER 2: CURRICULUM DESIGN, ORGANISATION, AND CONTENT
 2.1 Outlines of the Degree Program
me

4

 2.2 Requirements for the Degree Programme

4

 2.3 Design, Organisation, and Content of Curriculum

4

CHAPTER 3: FULL DESCRIPTION OF MODULES

 3.1 Module Descriptor

7

 3.2 Introductory Modules

7

 3.3 Intermediate Modules

16
 3.4 Advanced Modules

22
 3.5 Elective Modules

31
Appendix A: The Prerequisite relationships between modules

36
APPENDIX B: Study Plan of Computer Science Programme
37

CHAPTER 1

Introduction TO CURRICULUM DESIGN

This Handbook contains a set of module descriptions and some information on the curriculum design and organisation that mostly follow the report of the Computing Curricula 2001 project (CC2001). The CC2001 is a joint undertaking of the Computer Society of the Institute for Electrical and Electronic Engineers (IEEE-SE) and the Association for Computing Machinery (ACM) that developed curricular guidelines for undergraduate programs in computing.
These modules are offered at the Department of Computer Science, Faculty of Information Technology/ Philadelphia University, to obtain the four years B.Sc. (honour) degree in Software Engineering (SE).
The information given in this Handbook is extracted for the Program Specifications for the Degree programme. These specifications are published separately.

1.1 Fundamental Concepts

The most important concepts for understanding the module descriptions are as follows:

 The SE Body of Knowledge. The modules described in this Handbook are defined in relation to a general taxonomy of that portion of Software Engineering appropriate for an undergraduate curriculum. That taxonomy represents the body of knowledge for Software Engineering. The body of knowledge is organised hierarchically into three levels. The highest level of the hierarchy is the area, which represents a particular disciplinary sub-field. The areas are broken down into smaller divisions called units, which represent individual thematic modules within an area. Each unit is further subdivided into a set of topics, which are the lowest level of the hierarchy.
For coding the modules, the Department of SE has applied the following scheme of coding. Each area is identified by a one-digit number, such as 1 for Programming Fundamentals or 3 for Architecture / Operating Systems. Each unit is identified by adding a numeric suffix to the area number; as an example, 31 is a unit on Computer Logic Design of the area “Architecture / Operating Systems”.

The whole Software Engineering areas are listed in Table (1-1).
Table (1-1): The Areas of Software Engineering
	1.
	Programming Fundamentals (PF)

	2.
	Programming Languages (PL)

	3.
	Algorithms (AL)

	4.
	Architecture (AR)

	5.
	Operating Systems (OS)

	6.
	Networks (NE)

	7.
	Distributed Computing (DC)

	8.
	Human-Computer Interaction (HC)

	9.
	Information Systems (IS)

	10.
	Intelligent Systems (IS)

	11.
	Information Management (IM)

	12.
	Social and Professional Issues (SP)

	13.
	Software Engineering (SE)

 Core and Elective Units. Given the expanding scope of the computing discipline, it is impossible to insist that every undergraduate learn all the topics that were at one time considered fundamental to the field. The CC2001 report defines a minimal set of core units for which there is a broad consensus that the material is essential to anyone obtaining an undergraduate degree in computer science. Because the core is defined as minimal, the core alone cannot constitute a complete undergraduate curriculum. The undergraduate program must include additional elective units from the body of knowledge. These elective units could be chosen according to the needs of the individual student. Note that, occasionally, timetabling difficulties restricts elective units.

 Credit Hours. To give a sense of the time required to cover a particular unit, a time metric should be chosen. The system of study at Philadelphia University is based on the credit hours. The basic measure unit of the curriculum is 3 credit hours module (or course unit). A module, which delivers at least 3 hours per week of lectures or tutorial time, is worth 3 credit hours. Some modules may also provide an extra 1-hour per week for laboratory, but the module is still classified as 3 credit hours. In general, over a 16 weeks semester, a typical module provides minimum 45 hours of contact time. The final week of the semester is used for the examinations. The contact time corresponds to the in-class time required to present the material in a traditional lecture oriented format. Note that this time does not include the instructor's preparation time or the time students spend outside of class. As a general guideline, the time required outside of class is twice the time of the in­class time. Thus, a unit that is listed as requiring 3 credit hours will typically entails a total of 9 hours (3 in class and 6 outside). It is also important to keep in mind that the time associated with each unit represents the minimum number of hours required for adequate coverage, and that it is always appropriate to spend more time than the listed minimum.
1.2 Format of the Module Coding Adopted
Each module in the SE programme is identified by a code and a title. For example, "721221 Object Oriented Data Structures" represents a module offered by Faculty of Information Technology, Department of Software Engineering in the second year, in the area of Programming Fundamentals, and the module title is Object Oriented Data Structures. Figure (1-1) illustrates the scheme of module coding and numbering, where the Object Oriented Data Structures module is presented as an example.
Figure (1-1) Module Coding and Numbering Scheme

[image: image2.png]™

Y,
Y
o \m\“

 Faculty number
 1 = Art, 2 = Science, ... , 7 = Information Technology

 Department number within the Faculty

 11 = Applied Computer Science, 21 = Software Engineering, …, 50 = Computer Science

 Year number

 1 = First year, 2 = Second year, 3 = Third year, 4 = Fourth year

 Subject area number

 1 = Programming Fundamentals (PF)

 2 = Theory / Languages (DS, AL, PL)

 3 = Architecture/Operating Systems (AR, OS)

 4 = Net-Centric Computing (NC)

 5 = Intelligent Systems (IS)

 6 = Information Management (IM)

 ------ 7 = HCI / Graphics / Applications (HC, GV, CN, other)

 7 2 1 2 2 1 8 = Professional Practice (SE, SP)

 9 = Project / Training / Special Topics

 Identifying unit number within area
CHAPTER 2

CURRICULUM DESIGN, ORGANISATION, AND CONTENT

2.1 Outlines of the Degree Programme
Within the general area of Software Engineering (SE), the modules recognise several major subject themes. This represents fundamental material on programming, algorithms and software engineering, the structure and operation of computer systems including a high-level view of processing, memory, data communication and input/output devices, plus operating systems and compilers, graphics and user interfaces. This includes the theoretical foundations of computing, including programming languages and formal analysis of algorithms and machines.

Details of each module are set out in Chapter (3).

2.2 Requirements for the Degree Programme
The SE programme is covered with different requirements. For obtaining the full award, students should complete 44 modules, each of 3 credit hours, (i.e. a total of 132 credit hours) summarised as follows:

- 9 modules (University requirements)

24 hours

- 8 modules (Faculty requirements)

24 hours

- 22 modules (Departmental Compulsories)
66 hours

- 2 modules (Departmental Electives)

6 hours

- 3 modules (Supportive requirements)

12 hours

The Faculty requirements and University requirements include some computer-oriented modules that account to the Department requirements. (See Chapter (3), Table (3-1) for the titles of these modules).

2.3 Design, Organisation, and Content of Curriculum

 Organisation of Modules: The modules are organised into three levels according to the year at which they occur in the curriculum:

1- Level 1: Introductory modules,

2- Level 2: Intermediate modules,
3- Level 3: Advanced modules.

Modules designated as Introductory are offered in the first and second years of the Department curriculum. Modules listed as Intermediate are usually offered in the second or third year and build a foundation for further study in the field. Modules designated as Advanced tend to be taken in later years (third and fourth) and focus on those topics that require significant preparation in the earlier coursework. For these modules, the Department wishes to orient such modules to its own areas of expertise.
While these distinctions are easy to understand in their own right, it is important to recognise that there is no necessary relationship between the notions of core and elective - which apply to units in the body of knowledge - and the level of the module. The introductory and intermediate modules concentrate on core material, and the advanced modules include some core material and elective modules.

The point of organising the modules into three levels: Introductory, Intermediate, and Advanced is to provide natural boundaries for defining implementation strategies. The CC2001 report defined many strategies. Figure (2-1) shows these strategies and their relationship in the curriculum.

Figure (2-1) Module Levels and Implementation Strategies

 Introductory Imperative First Object First Functional First Breadth First Algorithmic First Hardware First

 Modules
 Intermediate Topic-Based Approach Compressed Approach Systems-Based Approach Web-Based Approach
 Modules
 Advanced Additional modules used to complete the undergraduate program
 Modules
- For Introductory Modules, the Department adopted the Imperative-First (or Procedural-First) strategy. The imperative language is C++. Then Java is adopted to introduce Object Oriented concepts.

- For Intermediate Modules, the Department adopted Topic-Based strategy to preparing for specific areas.

- Some Advanced Modules are selected to attend the departmental objectives and the areas of expertise.

The SE programme is organised to cover some specified areas selected from the general areas listed in Table (1-1). Table (2-1) shows the areas covered by the specialisation Modules (including those computer-oriented modules taken from the Faculty and University requirements) and the number of modules in each of them. Note that the ratios in Table (2-1) are calculated according to the total number of modules (i.e. 44).
Table (2-1) Specialisation Areas

	
	Area
	Compulsory Modules
	Elective
 Modules
	Total No. of Modules

	
	
	No.
	(No. /44) %
	No.
	(No./44) %
	

	1-
	Programming Fundamentals
	6
	13.63%
	0

	6

	2-
	Languages / Algorithms
	2
	 4.54 %
	0

	2

	3-
	Architecture / Operating Systems
	2
	 4.54%
	1
	2.27 %
	3

	4-
	Networks / Distributed Computing
	2
	4.54%
	1
	2.27 %
	3

	5-
	Information Systems / Intelligent Systems
	2
	 4.54%
	2
	 4.54%
	4

	6-
	Information Management
	2
	 4.54%
	0

	2

	7-
	Human Computer Interaction / Applications
	3
	6.81 %
	3
	6.81 %
	6

	8-
	Professional Practice/ Software Engineering
	11
	 25.00 %
	1
	2.27 %
	12

	9-
	Project / Training
	2
	 4.54 %
	0

	2

	
	Total
	32
	72.73 %
	any 2
	4.55 %
	40

 (90.91%)

 The Study Plan. The whole modules of the curriculum offered by the SE Department are shown in Appendix A of this Handbook.

 The Guidance Plan. The Department guides students in their registration and selection of modules during the four years. The Department organizes a guidance plan that is shown in Table (2-2), where UR, FR, DR, and SR indicate University Requirements, Faculty Requirements, Department Requirements, and Supportive Requirements, respectively.

Table (2-2) Guidance Plan for the SE Curriculum
	Year
	Semester
	Module

 Number
	Module Title
	Prerequisite
	Types of Requirements

	First
	First

(18 Credit Hours)
	110101

130101

750112

210101

210104
	Arabic Language Skills (1)
English Language Skills (1)
UE

Programming Fundamentals
Mathematics (1)

Discrete Structures

	UR

UR

UE

FR

SR

SR

	
	Second

(18 Credit Hours)
	111101

130102

721120

731150

	National Education
UE

English Language Skills (2)
Object Oriented Paradigms
Introduction to Systems and Information Technology
UE

130101

750112

750112

	UR

UE

FR

FR

FR

UE

	Second
	First

(18 Credit Hours)

	721240

731270

761272

210231

721210

721221

	Computing Ethics
Introduction to Web Programming
Multimedia Systems
Introduction to Statistics and Probabilities
Introduction to Software Engineering
Object Oriented Data Structures

	731150

750112

731150

721120+210104

	FR

FR

FR

SR

DR

DR

	
	Second

(18 Credit Hours)
	761211

721222

721230

750232

760261

	Windows Programming
UE

Software Modeling
Software Requirements
Computer Architecture
Database Fundamentals
	721120

721210

721210

731150

721221

	FR

UE

DR

DR

DR

DR

	Third
	First

(18 Credit Hours)

	721320

721321

721330

750322

750333

750351

	Software Architecture
Concurrent and Distributed Programming
Software Production

Design and Analysis of Algorithms
Principles of Operating Systems
Fundamentals of Artificial Intelligence
	721222

721221

721222

721221

750232

721221
	DR

DR

DR

DR

DR

DR

	
	Second

(15 Credit Hours)
	721322

721323

721324

721331

761340
	Software Design
Graphical User Interface Design

Advanced Object Oriented Programming
Software Project Management
Fundamentals of Computer Networks
	721230+721320

721320+761211

721321

721330

721221

	DR

DR

DR

DR

DR

	Fourth
	First

(15 Credit Hours)

721420

721430

721440

	UE

Software Construction and Development
Software Testing

Practical Training *

DE

721322

721322

Department Agreement

	UE

DR

DR

DR

DE

	
	Second

(12 Credit Hours)
	111100

721421

721441

	Military Sciences

Software Reverse Rngineering
Research Project
DE

721420

721440+721420

	UR

DR

DR

DE

CHAPTER 3

Full Description of Modules

This chapter presents the full description of the Department modules and those modules from the Faculty and University requirements that are computer-oriented modules.

3.1 Module Descriptor

The Department organised a format for the module descriptor that includes much information on the module. This sub-section presents the components of the adopted module descriptor that are shown in Figure (3-1). The University Quality Assurance Handbook explains in details the components of the module descriptor.

Figure (3-1) Components of the Module Description

Module Number, Module Title

Providing Department:

Module Coordinator(s):

Year:

Credit:

Prerequisites: Required modules or background

Aims:

Teaching Methods:

Learning Outcomes:

Assessment of Learning Outcomes:

Contribution to Programme Learning Outcome:

Syllabus: Bulleted list providing an outline of the topics covered.

Modes of Assessment:

Textbook and Supporting Materials:

Instructor:

3.2 Introductory Modules

Table (3-1) presents the Introductory (Level 1) modules whose full descriptions are given below.

Table (3-1) Introductory Modules in Computer Science Department

	Module Number
	Module Title
	Prerequisite

	210104
	Discrete Structures
	None

	761211
	Windows Programming
	721120

	761272
	Multimedia Systems
	None

	731270
	WWW: Concepts and Programming
	750112

	721120
	The Object-Oriented Paradigms
	750112

	721221
	Object-Oriented Data Structures
	721120 + 210104

	731151
	Introduction to Information Systems
	750112

	750351
	Fundamentals of Artificial Intelligence
	721221

	750112
	Programming Fundamentals
	None

210104, Discrete Structures

3 hours per week, 3 credit hours, prerequisite: none
Aims:

This module will introduce the student to the basic language and ideas of discrete mathematics that occur in all branches of information technology. It will also begin the process of training the student to argue correctly, both informally and formally, about these structures. The student will begin to learn the use of abstract analysis to solve concrete problems.

Teaching Methods: 32 hours Lectures (2 per week) + 16 hours Tutorials (1 per week)
Synopses: Arithmetic: The standard discrete number systems and the arithmetical operations on them with their properties; Sets and Functions: Standard set and function notation and terminology. Boolean operations on sets. Injective and surjective functions. Composition of functions; Logic: The connectives (or, and, not, implies, if and only if), Formulae of propositional logic, Truth tables, Tautologies and logical equivalence, Normal forms, The quantifiers (for all, there exists); Binary Relations: Definitions and examples, Properties of relations, Digraphs and representations of relations, Equivalence relations and Partitions, Combining relations and closure operators, Order relations, Recurrence Relations: Construction an solutions; Induction: The principle of mathematical induction, with many examples. Structural induction; Combinatory: Inclusion Exclusion principle, Binomial coefficients and permutations, Pascal's triangle. Summing series involving binomial coefficients.

Modes of Assessment:

Two 1-hour midterm exams (15% each); Coursework (15%); Tutorial Contribution (5%); Final (unseen) 2-hour examination (50%)

Textbooks and Supporting Material:

1- TRUSS, J.K. Discrete Mathematics for Computer Scientists. (ISBN 0-201-175-649) 2nd Edition, Addison Wesley 1998.

There is not a book, which covers exactly the material in this module. The above book covers a large part of the module but also contains additional material, some of which is covered in later modules.

There are many books on discrete mathematics, which have useful features. For example

1- MATTSON, H.F. Discrete Mathematics with Applications (ISBN 0-471-599-662), Wiley 1993.

2- GARNIER, R. and TAYLOR, J. Discrete Mathematics for New Technology (ISBN 0-750-301-35X) Institute of Physics Publishing 1992.

3- ECCLES, P.J, An Introduction to Mathematical Reasoning, (ISBN 0-521-59718-8) C.U.P. 1997.

……..

761211, Windows Programming

3 hours per week, 3 credit hours, prerequisite: 721120
Aims: This module aims to provide students capabilities to design and implement the applications using visual programming through Microsoft Visual Studio .Net and VC# to develop different types of applications using .Net platform.
Teaching Methods: 32 hours Lectures (2 per week) + 12 hours Tutorials (on average 1 per week) + 16 hours Laboratory (1 per week) + 4 hours Seminar
Synopsis: Introducing the Microsoft .NET Platform: .NET Platform, .NET and Windows DNA, .NET Architecture Hierarchy, .NET Platform features, Multilanguage Development, Platform and Processor Independence, .NET Components, Common Type System CTS, Common Language Specification CLS , .NET Base Class Library (BCL); Visual Studio.NET IDE: Visual Studio.NET, Components of VS.NET, Design Window, Code Window, Server Explorer, Toolbox, Docking Windows, Properties Explorer, Solution Explorer, Object Browser, Dynamic Help, Task List Explorer, Features of VS.NET, XML Editor, Creating a Project, Add Reference, Build the Project, Debugging a Project; Introducing C# Programming: Data Types, Value Types, Reference Types, Control Structures (if, if-else, switch, for, while, do while, break, continue, return, goto), Understanding Properties and Indexers Accessing Lists (Array) with Indexers, Events, Exception Handling, Using OOP (Object, Class, Constructor/destructor, Inheritance, Polymorphism, Encapsulation); Windows Forms: Windows Forms, Adding Controls, Adding an Event Handler, Adding Controls at Runtime, Attaching an Event Handler at Runtime, Writing a Simple Text Editor, Creating a Menu, Adding a New Form, Creating a Multiple Document Interface, Creating a Dialog Form, Using Form Inheritance, Adding a TabControl,, Anchoring Controls, Changing the Startup Form, Connecting the Dialog, Using the ListView and TreeView, Controls, Building an ImageList, Adding a ListView, Using the Details View, Attaching a Context Menu, Adding a TreeView, Implementing Drag and Drop, Creating Controls, Creating a User Control, Adding a Property, Adding Functionality, Writing a Custom Control, Testing the Control, Enhancing the Control, Sub classing Controls; Graphics and Multimedia: Graphics Contexts and Graphics Objects, Color Control, Font Control, Drawing Lines, Rectangles and Ovals, Drawing Arcs, Drawing Polygons and Polylines, Advanced Graphics Capabilities, Introduction to Multimedia, Loading Displaying and Scaling Images, Animating a Series of Images, Windows Media Player, Microsoft Agent; ADO.NET: ADO.NET Architecture, Understanding the ConnectionObject, Building the Connection String, Understanding the CommandObject, Understanding DataReaders, Understanding DataSets and DataAdapters, DataTable, DataColumn, DataRow, Differences between DataReader Model and DataSet Model, Understanding the DataViewObject ,Working with System.Data.OleDb, Using DataReaders, Using DataSets, Working with SQL.NET, Using Stored Procedures, Working with Odbc.NET, Using DSN Connection; Multithreading: Thread States: Life Cycle of a Thread, Thread Priorities and Thread Scheduling, Thread Synchronization and Class Monitor, Producer/Consumer Relationship without Thread, Synchronization, Producer/Consumer Relationship with Thread Synchronization, Producer/Consumer Relationship: Circular Buffer; Networking: Introduction, Establishing a Simple Server (Using Stream Sockets), Establishing a Simple Client (Using Stream Sockets), Client/Server Interaction with Stream-Socket Connections, Connectionless Client/Server Interaction with Datagrams, one Server multi-Clients system; ASP.NET: Introducing the ASP.NET Architecture, ASP.NET Server Controls, Working with User, Controls, Custom Controls, Understanding the Web.config File, Using the Global.asax Page,

Modes of Assessment: Two 1-hour midterm exams (15% each); Assignment 15%; Tutorial Contribution (5%); 2-hours Final Exam (50%: 35% Written Exam + 15% Practical Exam)

Textbooks and reference books:

1- H. M. Deitel & J. Deitel, “ C# How to Program”, Prentice Hall, 2001

2- A.Turtschi et.al. “ Mastering Visual C# .Net”, Sybex 2002

3- Eric Gunnerson, “A Programmer’s Introduction to C#”, Apress 2000

4- Anders Hejlsberg et.al. “ C# Language Reference”, Microsoft Corporation 2000

5- Erric Buttow et al. “C#, your visual blueprint for building .Net application”, Hungry Minds 2002

6- Charles Carroll, “Programming C#”, O’Reily & Associates 2000

7- Karh Watson “Beginning C#” Wrox Press 2001.

……..
761272, Multimedia Systems

3 hours per week, 3 credit hours, prerequisite: None
Aims: This module is an introduction to the major topics related to multimedia (desktop publishing, hypermedia, presentation media, graphics, animation, sound, video, and integrated authoring techniques), multimedia devices and development tools. It emphasizes hands-on experience for students to familiarize them with the range of tools used in creating computer-based multimedia.
Teaching Methods: 40 hours Lectures (2-3 per week) + 8 hours Tutorials (1 per 2 weeks) + 16 hours Laboratory (1 per week)

Synopsis: Introduction to Multimedia: definition, classification (discrete, continuous, passive, interactive), properties; Medium perception, representation, presentation, storage, and transmissionl; Lab: An overview of macromedia flash; MM hardware, application areas, stages of MM project, design issues (speed, simplicity, clarity, consistency, ease of use, and navigation); Lab: Flash drawing tools; Media and data stream, transmission modes, authoring tools (types, features, card/page-based, time-based, and icon-based); Lab: Flash panels; Text: text importance, encoding, fonts (type, size, style, leading, and kerning), text in MM (font design, menus, buttons, fields, portrait, landscape), editing design tools, hypertext vs. hypermedia; Lab: Animation and motion tween; Sound terminology (acoustic, electromagnetic wave, cycle, frequency, amplitude, decibel); Digital audio (sampling, quantization, file size, size vs. quality, formats); Lab: Guide layer and symbols in flash; MIDI files (creation, size, advantages, disadvantages). MIDI vs. digital audio; Speech: generation (TTS), recognition (STT), applications, difficulties, program learning); Lab: Shape tweening; Sound summary; Lab: Demos on MIDI maker, TTS and STT; Digital image (bitmap, vector graphic); Bitmap (pixels, color encoding, palette, and models, resolution); Lab: Mask layers and text animation in flash; Image scanning, capturing, editing, morphing, dithering, file size, format (BMP, GIF, PNG, JPEG, …etc); Vector graphics (types, properties, drawing, advantages, disadvantages, file size); Lab: Design and create buttons in Flash; Bitmap image vs. vector graphic; Image processing and programming skills; Lab: Image processing (write code); Animation : transition, cel animation (key frames, tweening, layers, morphing, formats); Lab: Image processing (write code); Video: concepts, standards, capturing, analog vs. digital, TV vs, computer video, compression and streaming; Lab: Flash action scripts; Encoding requirements (entropy, source, and adaptive), fixed length vs. variable length encoding, compression (HW vs. SW, lossy vs. lossless); Lab: Flash action scripts; Compression (symmetric vs. asymmetric, dialogue mode vs. retrieval mode, RLE, Huffman); Lab: Presentations of Flash and programming assignments; Compression techniques (JPEG and MPEG); Lab: Presentations of Flash and programming assignments;
Modes of Assessment: Two 1-hour midterm exams (15% each); Assignments (10%); Lab work (10%) + 2-hours Final Exam (50%)

Textbooks and reference books:

1. Vaughan Tay, Multimedia: Making it work, Berkeley Osborne McGraw-Hill, 6th Edition 2004.

2. Ralf Steinmetz & Klara Nahrstedt, Multimedia fundamentals Volume 1: Media coding and content processing, Prentice-Hall, 2002.

3. Stephen McLoughlin, Multimedia: Concepts and Practice, Prentice hall, 2001.

4. Ze-Nian Li & Mark S Drew, Fundamentals of Multimedia, Prentice hall, 2004.

5. Jen Dehaan, Macromedia FLASH MX 2004, training from the source, Macromedia press, 2004.
Multimedia Software Packages:

 Flash, Macromedia, Photoshop

……

731270, World Wide Web: Concepts and Programming

3 hours per week, 3 credit hours, prerequisite: 750112
Aims:

This module aims to give students an introduction and general concepts of the Internet and Intranet technology, the World Wide Web, TCP/IP and Web design languages (HTML, CSS, JavaScript, and ASP). It also involves the necessary background that student needs to develop different tasks of programming aspects concerning the foregoing objectives. Sufficient study levels are supposed to be studied and learned by the students within the course for the sake of applying the different fields of education, learning, economical, E-Business and other approaches.

Teaching Methods: 32 hours Lectures (2 per week) + 8 hours Tutorials (1 per 2 weeks) + 24 hours Laboratory (1-2 per week)

Synopsis: Internet and Intranet Technology: Concepts, protocols, Services, and architecture, TCP/IP Architecture and Protocols (Client & Server), DNS, Internet Service Providers (ISP), Internet Services: USENET News, E-Mail, FTP, and Telnet; The Web: Basic Concepts, WWW and Web Servers, Links: Hyperlinks & Hypermedia, Web pages and home pages, Browsers & Search Engines; Introduction to Markup Languages; Editing HTML, HTML Tags: Headers, HTML Tags: Text Styling and Formatting, and linking; HTML Tags: Images and Image maps; Basic HTML Lists and Tables; Basic HTML Forms and Frames; Frames and Cascading Style Sheets; Cascading Style Sheets and Introduction to Client Scripting; Simple JavaScript Programs; JavaScript: Control Structures, if, if/else, While, for, and switch. JavaScript: Break and Continue statements; JavaScript: Functions, Arrays.

Modes of Assessment: Two 1-hour midterm exams (15% each); Lab work (15%); Tutorial contribution (5%); 2-hours Final Exam (50%).

Textbooks and reference books:

1- Deitel & Deitel, Internet and World Wide Web How to Program, Prentice Hall, 3rd Edition, 2004.
2- Douglas Comer, Computer Networks & Internets, Prentice Hall, 2003

3- Brian Salter, A simple guide to HTML, Prentice Hall, 2002.

4- Ellenn Behoriam, “HTML and XHTML: Creating Web Pages”, Prentice Hall, 2002

5- Gary Rebholz, “How to Use HTML & XHTML”, Sams, 2001

6- Ellie Quigley, “JavaScript by Examples”, Prentice Hall, 2004

7- Tom Negrino, “JavaScript for the World Wide Web: Visual QuickStart Guide”, Student Edition, 5/E, Peachpit Press, 2004

8- Susan Anderson-Freed, “Weaving a Website: Programming in HTML, Java Script, Perl and Java”, Prentice Hall, 2002
Website(s):

1. www.w3schools.com

2. www.webteacher.org.

3. www.microsoft.com.

4. www.whatis.com.

5. www.idocs.org.

……

721120, Object-Oriented Paradigms
4 hours per week, 3 credit hours, prerequisite: 750112
Aims:

This module introduces the concepts of object-oriented programming for students after having a background in the procedural paradigm. It aims to develop an understanding of the principles of the object-oriented paradigm, provide familiarity with approaches to object-oriented modelling and design, provide a familiarity with the syntax, class hierarchy, environment and simple application construction for an object-oriented programming language. The module emphasizes modern software engineering principles and developing fundamental programming skills in the context of a language that supports the object-oriented paradigm (Java for instance).
Teaching Methods: 32 hours Lectures (2 per week) + 16 hours Tutorial (1 per week) + 16 hours Laboratory (1 per week)
Synopsis: Introduction to Object Oriented Thinking: Object Modeling; Objects and Classes; Understanding Class Definition; Object Interaction (1): Overloading; Object Interaction (2): Composition; Grouping Objects; Using Library Classes; More Sophisticated Behavior: Information Hiding; Inheritance (1): Reuse, Inheritance (2): Sub-typing; Inheritance (3): Polymorphism, Overriding; Abstract Classes, Abstract Methods, Interfaces, Multiple inheritance; Exception Handling; Designing Applications
Modes of Assessment:

Two 1-hour midterm exams (15% each); Lab work (15%); Tutorial contribution (5%); Final Exam: written (unseen) Exam (40%) and lab Exam (10%)

Textbooks and Supporting Material:

1- David j. Barnes And Michael Kolling, Objects First with Java: A Practical Introduction using BlueJ, Prentice Hall, Pearson Education, 2nd Edition, 2005

……

721221, Object-Oriented Data Structures
3 hours per week, 3 credit hours, prerequisite: 721120 + 210104
Aims:

This is a programming-intensive module where students learn the fundamentals of designing data structures for use in complex programs. Data structures course is an essential area of study for computer scientists and for anyone who will ever undertake any serious programming task. This course deals with the fundamentals of organizing and manipulating data efficiently using clean conceptual models. Students study many of the important conceptual data types, their realization through implementation, and analysis of their efficiency. Implementations in this course are carried out in the Java programming language, but the principles are more generally applicable to most modern programming environments.

Topics include recursion, the underlying philosophy of object-oriented programming, fundamental data structures (including stacks, queues, linked lists, hash tables, trees, and graphs), and the basics of algorithmic analysis.
Teaching Methods: 32 hours Lectures (2 per week) + 16 hours Tutorial (1 per week)

Synopsis: Introduction to Software Engineering, Introduction to data structures: data structures and algorithms; Data Design and Implementation; Algorithm complexity; List ADT: static implementation, single linked list; List ADT: dynamic implementation, single linked list; Lists: doubly linked list and circular linked list; Stacks: Static implementation and dynamic implementation; Queues: Static implementation and dynamic implementation, circular queue; Programming with Recursion; Trees: Binary search tree; Trees : binary expression tree, and heap tree; Priority Queues and Heaps; Graph ADT; Sorting: Bubble sort, selection sort, insertion sort, Quick sort, Heap sort; Searching: Sequential search, Binary Search; Hashing: hash function, Separate chaining, open addressing

Modes of Assessment:

Two 1-hour midterm exams (15% each); Coursework (15%); Tutorial Contribution (5%); Final (unseen) Exam (50%)

Textbooks and Supporting Material:

1- Nell Dale, Daniel T. Joyce and Chip Weems, Object-Oriented Data Structures using Java, Jones and Bartlett Publishers, 2001

2- Goodrich and Tamassia, Data Structures and Algorithms in Java, 2nd edition, John Wiley and Sons, 2000, ISBN 0471383678.

3- Arnold, Gosling, and Holmes, The Java Programming Language, 3rd edition, Addison-Wesley, 2000, ISBN 0201704331.

4- Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Addison-Wesley, 1999

……

731150, Introduction to Information Systems

3 hours per week, 3 credit hours, prerequisite: 750112
Aims: This module aims to provide students with some concepts of information systems and some applications in business and management systems. This is a major introductory course presents problems in business environment and solutions with computer-based tools. It focuses on systems and information systems concepts and techniques. Students will learn the most effective ways to use information systems. Case studies are examined to highlight new technology and applications like multimedia.

Teaching Methods: 20 hours Lectures (1-2 hours per week) + 25 hours Class workshop and labs/E-Learning (1-2 per week) + 3 hours Workshops
Modes of Assessment: Two midterm exams (15% each); Homework (10%); Workshop Contribution (10%); 2-hours Final Exam (50%).

Textbooks and reference books:

1- Ralph M. Stair, George W. Reynolds, Fundamentals of Information Systems. Course Technology; 4th edition, 2007

2- Gerald M. Weinberg, an Introduction to General Systems Thinking, Silver Anniversary Edition, 2001.

3- The Analysis, Design, and Implementation of Information Systems, Henry C. Lucas, Jr, 4th ed. McGraw-Hill, 1992.

4- Leonard M. Jessup and Josef S. Valacich, Information Systems Foundations, 1999, Que E&T

5- James A. O'Brien, Introduction to Information Systems: Essentials for the e-Business Enterprise. 11th ed. 2003, McGraw-Hill Higher Education

6- David Kroenke, Management Information System, 1999.

……

750351, Fundamentals of Artificial Intelligence

3 hours per week, 3 credit hours, prerequisite: 721221

Aims: This module aims to present the basic representation and reasoning paradigms used in AI in both theory and practice with careful attention to the underlying principles of logic, search, and probability. It is also designed to show students practical examples of the use of AI in applications and to encourage further reading. The assignments given to students aim to provide a sound practical introduction to knowledge-based systems and a basic introduction to modern paradigms of knowledge representation and belief networks. The tutorials aim to provide an introduction to the underlying issues in cognitive emulation and to provide an opportunity for practical exercises in logic and probability.

Teaching Method: 30 hours lectures (2 hours per week) + 15 hours Tutorials (1 per week).
Synopsis: Fundamental issues: History of AI, philosophical questions; definitions of intelligent systems; modelling the world; the role of heuristics. Search and constraint satisfaction: Problem spaces; brute­force search; best­first search; two­player games; constraint satisfaction. Knowledge representation and reasoning: Review of propositional and predicate logic; resolution and theorem proving; non-monotonic inference; probabilistic reasoning; Bayes theorem. Advanced search: Genetic algorithms; simulated annealing; local search. Advanced knowledge representation and reasoning: Structured representation; non-monotonic reasoning; reasoning on action and change; temporal and spatial reasoning; uncertainty; knowledge representation for diagnosis, qualitative representation. Machine learning and neural networks: Definition and examples of machine learning; supervised learning; learning decision trees; learning neural networks; learning belief networks; the nearest neighbour algorithm; learning theory; the problem of over fitting; unsupervised learning; reinforcement learning.

Assessment: Two 1-hour midterm exams (20% each) + Assignments (5%) + Tutorial contribution (5%); 2-hours Final Exam (50%).
Textbooks:
1- S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall, 2001

2- G.F. Luger and W.A. Stubblfield, Artificial Intelligence: Strategies for Complex Problem Solving, 1998

3- P. H. Winston, Artificial Intelligence, Addison Wesley, 1992

…….

3.3 Intermediate Modules

The Intermediate (Level 2) modules are listed in Table (3-2) and their full descriptions are given below.

 Table (3-2) Intermediate Modules in Software Engineering Department

	Module Number
	Module Title
	Prerequisite

	750232
	Computer Organization and Architecture
	731150

	750333
	Principles of Operating Systems
	750232

	721210
	Introduction to Software Engineering
	731150

	721240
	Computing Ethics
	731150

	721222
	Software Modelling
	721210

	210231
	Introduction to Statistics and Probabilities
	None

	761340
	Fundamentals of Computer Networks and Telecommunication
	721221

	721230
	Software Requirements
	721210

	721322
	Software Design
	721230 + 721320

	721323
	Graphical User Interface Design
	721320 + 761211

	760261
	Database Fundamentals
	721221

750232, Computer Organization and Architecture

3 hours per week, 3 credit hours, prerequisite: 731150
Aims:

The module will emphasize on the following knowledge areas: assembly level machine organization, memory system organization and architecture, interfacing and communication, functional organization, and alternative architectures.

Teaching Method: 32 hours Lectures (2 per week) + 12 hours Tutorials (0-1 per week) + 4 hours Seminars/Presentations

Synopsis: Review of Basic Computer Architecture and Microprocessors; Von Neumann architecture: principles, instruction sets, instruction format, addressing modes, assembly/machine language programming, CISC versus RISC architectures, subroutine call and return mechanism; Control unit: hardwired, micro-programmed; Storage system and their technology: memory hierarchy, main memory organization and operations, cycle time, bandwidth and interleaving; cache memory: addressing mapping, block size, replacement and store policy; virtual memory: page table , TLB; I/O fundamentals: handshaking, buffering, programmed I/O, interrupts-driven I/O; Buses: types, bus protocols, arbitration, Direct Access Memory; Pipelining: principles, Instruction pipelines, Pipelines difficulties and solutions; Introduction to SIMD, MIMD.

Modes of Assessment:

Two midterm exams (15% each); Course work (10%); Seminars (5%); Tutorial Contribution (5%); Final Exam (50%)

Textbook and Supporting Material:

1- Patterson, D. A. and Hennessy, J. L. Computer Organization and Design: The Hardware/ Software Interface. 2nd Edition, (ISBN 1-558-604-91X), Morgan Kaufmann 1998
2- William Stallings, Computer Architecture & Organization: Design for Performance, Prentice Hall, 2000

3- J. Van de Goor, Computer Architecture and Design , 1989.

………..

750333, Principles of Operating Systems

3 hours per week, 3 credit hours, prerequisite: 750232
Aims:

The aims of this module are to introduce the basic principles of computer systems organization and operation; to show how hardware is controlled by program at the hardware/software interface; to outline the basic OS resource management functions: memory, file, device (I/O), process management, and OS security/protection. Two concrete examples of operating systems are used to illustrate how principles and techniques are deployed in practice.
Teaching Method: 40 hours Lectures (2-3 per week) + 8 hours Tutorials (1 each fortnight)
Synopsis: Operating System overview; Operating System Structures: System components, Operating system services, System calls, System structures, Virtual machine; Processes: Process concept, Process scheduling, Operation on process, Cooperative process, Inter process communication; Threads: Thread overview, Benefits, User and kernel threads, Multithreading model, Solaris 2 threads; CPU Scheduling: Basic concept, Scheduling criteria, Scheduling algorithm, Thread scheduling, Algorithm evaluation; Process synchronization and mutual exclusion: Critical section problem, Two task solution, Synchronization hardware, Semaphore, Classical synchronization problem; Deadlock and starvation: System model, Deadlock characterization, Method for handling deadlock, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock; Memory management: Background, Swapping, Paging, Virtual memory, Background, Demand paging, Page replacement, Allocation of frame, Thrashing; File system implementation and management: File concept, Access method, Directory structure, Protection, File system structure, Allocation method, Free space management, Directory implementation, Efficiency and performance, I/O management and disk scheduling, Application I/O interface, Kernel I/O subsystem, I/O request handling, Disk structure, Disk scheduling, Disk management, Swap space management, Disk reliability, Stable storage implementation

Modes of Assessment:

Two 1-hour midterm exams (15% each); Assignments (10%); Lab work (5%); Tutorial contribution (5%); 2-hours Final Examination (50%)

Textbooks and Supporting Material:

1- A. Silberschatz and Peter Galvin, Applied Operating Systems Concepts, First edition, John Wiley & sons, Inc, 2000

2- J. Bacon, Concurrent Systems: Database and Distributed Systems, 2nd Edition, (ISBN 0-201-177-676), Addison Wesley, 1998.

3-A. S. Tanenbaum, Modern Operating Systems, Prentice Hall, 1992
………..

721210, Introduction to Software Engineering

3 hours per week, 3 credit hours, Second year, First semester, prerequisite: 731150
Aims:

This module aims to provide students a comprehensive introduction to software engineering. It gives an introduction to basic concepts, principles and techniques used in software engineering. This module gives an introduction to methods for analysis, design, testing, and implementation of medium size software systems. Simple and realistic case studies will be used along all the software process steps.

Teaching Methods: 38 hours Lectures (2-3 per week) + 10 hours Tutorial

Synopsis: Basic Concepts: Software product, Software crisis, software engineering, software process, software process model, methodologies, methods, tools, artefacts; Software Process (I): process models, iterative process; Software Process (II): software process activities (specification, design and implementation, validation/verification, evolution); Software Requirement Engineering (I): Functional/Non Functional requirements, user requirements, system requirement, requirement document; Software Requirement Engineering (II): Software requirement, elicitation and analysis, basics on Use cases, UML notation; Software Prototyping; System Models (I):Context models, Behavioural models; System Models (II): Data Models, Objects Models; Architectural Design: system structuring, control models, modular decomposition; Object Oriented Design, UML notation; User interface design: user interface design principles, user interaction, information presentation; Verification and Validation: planning, software inspections, automated static analysis; Software Testing : defect testing, integration testing; Software Change: program evolution dynamics, software maintenance; Software Cost estimation

Modes of Assessment:

Two 1-hour midterm exams (15% each); Assignments (15%); Tutorial contribution (5%); 2-hours Final Examination (50%)

Textbook and supporting material:
1- Ian Sommerville, Software Engineering 7/e, Addison Wesley, 2004

2- R. S. Pressman Software Engineering: A Practitioner's Approach, 5th Edition, McGraw Hill; 2001

 Website(s): www.software-engin.com
………..

721240, Computing Ethics
3 hours per week, 3 credit hours, prerequisite: 731150
Aims:

This module aims to give students an informed awareness of the principal issues of professional ethics and responsibility (ergonomics and ethics) in the analysis, design, implementation and use of computers, information systems and Information Technology (IT) products. This will help students in recognition of ethical problems when they occur. Also it will enable students to deal effectively with ethical, social and professional issues now and in their future careers.

Teaching Methods: 36 hours Lectures (2-3 per week) + 9 hours Projects (class work) (average 1 per week) + 3 hours Seminars (1 per month)
Synopsis: Introduction to Ethics; Professional and Professionalism; Code of Ethics and Social Issues; Computer/IT professionals; Computer Security; Privacy and Internet Issues; Information Systems and Ethics; Associations of IT professionals; Ethics and the Internet; Ethical Challenges of e-Business; Ethical Challenges of e-Business; Continuous Professional Development; Intellectual Property Rights; Jordanian Codes for Intellectual Property Rights; Seminars and Project Discussion.

Modes of Assessment:

Two 1-hour midterm exams (15% each); Assessment by individual essay (10%); Workshop Assessment (10%); Final examination: written Exam (35%) + Final (case study) presentation (15%)

Textbooks and Supporting Material:

1. Deborah G. Johnson, Computer Ethics. 3ed Edition, Englewood Cliffs, N.J., Prentice Hall, 2001.

2. Gorge Reynoids, Ethics in Information Technology, Thomason, 2003.
3. Sara Baase, A Gift of Fire: Social, Legal and Ethical Issues for Computer and the Internet, 2nd ed., 2003.
4. Tavani H. T. and Hoboken N. J., Ethics and Technology, John Wiley, 3rd ed, 2004.
5. مجموعة تشريعات الملكية الفكرية الأردنية
Website(s):

ACM, IEEE and BCS Web Sites.

www.cyberethics.cbi.msstste.edu

www.aitp.org
www.acm.org
www.prenhall.com
www.jcs.rg.jo
………..

210231, Introduction to Probability and Statistics

3 hours per week, 3 credit hours, prerequisite: none
Aims: This module aims to help students grasp basic statistical techniques and concepts, and to present real-life opportunities for applying them.
Teaching Method: 30 hours Lectures (2 per week) + 15 hours Tutorials (1 per week)
Synopsis: Descriptive statistics and probability distribution; Sampling ​​​​​​​ distribution Estimation for the​ mean, variance and proportions; Testing ​for the mean, variance and proportions; Regression and ​​​​​​​ correlation; One-way analysis of variance.
Assessment: Two 1-hour midterm exams (15% each); Assignments/Quizzes (10%); Tutorial Contribution (10%); 2-hours Final Exam (50%).
Textbooks:
1- D.C. Montgomery and .G.C. Runger, Applied Statistics and Probability For Engineers, 2nd Edition, Wiley, 2002
2- William, Probability and Statistics in Engineering and Management, Wiley, 2002

………..

761340, Fundamentals of Computer and Telecommunication Networks

3 hours per week, 3 credit hours, prerequisite: 721221
Aims: This module aims to introduce the principles of telecommunication networks (Fixed and Mobile) Architectures and Switching Technologies.

Teaching Method: 30 hours Lectures (2 hours per week) + 15 hours Tutorials (1 per week).
Synopsis: Network introduction, LAN, WAN, and Telecommunication Networks (Fixed and Mobile) Architectures; Switching Technologies: Layers, Services and Protocols concepts; IP technology.

Assessment: Two 1-hour midterm exams (15% each) + Assignments (15%) + Tutorial contributions (5%) + 2-hours final exam (50%).
Textbooks:

Johan Zuidweg, Next Generation Intelligent Networks, Artech House, ISBN
……..

721230, Software Requirements

3 hours per week, 3 credit hours, prerequisite: 721210
Aims: The aim of this module is to introduce the basic concepts and principles of software engineering requirements.

Teaching Method: 30 hours Lectures (2 hours per week) + 15 hours Tutorials (1 per week).
Synopsis: Basic concepts and principles of software requirements engineering, its tools and techniques, and methods for modelling software systems; various approaches to requirements analysis are examined: structured, object-oriented, and formal approaches.
Assessment: Two 1-hour midterm exams (15% each), Assignments (15%), Tutorial contributions (5%),

2-hours final exam (50%).
Textbooks:
Ian K. Bray, An Introduction to Requirement Engineering, ISBN 020176792-9, 2003
………..

721322, Software Design
3 hours per week, 3 credit hours, prerequisite: 721230 + 721320
Aims: This module emphasizes on the basic concepts of software design.

Teaching Method: 30 hours Lectures (2 hours per week) + 15 hours Tutorials (1 per week).
Synopsis: Software Systems, Software Cricis, Software analysis and design, Problem analysis Process, Object model, behaviour model, Process model, Communication model; Entity Relation Diagram (ERD), Data flow Diagram (DFD), Data Dictionary (DD), Process Specification, Structured Design; UML, Paradiam, OMT (Tumbaugh), OOA (Booch); Design Patterns; Risk management; Quality Assurance.

Assessment: Two 1-hour midterm exams (15% each) + Assignments (15%) + Tutorial contributions (5%) + 2-hours final exam (50%).
Textbooks:

1. Ian Sommerville, Software Engineering 6TH edition, Addison Wesley Longman, Inc., 2000

2. Hoffer, George, and Valacich, Modern Systems Analysis & Design, 3rd edition, ISBN 0-13-033990-3

………..

721323, Graphical User Interface Design

3 hours per week, 3 credit hours, prerequisite: 721320 + 761211

Aims: HCI (human-computer interaction) is the study of how people interact with computers. It is concerned with the design, evaluation, and implementation of interactive computing systems for human use and with the study of environment surrounding them. The interaction with the computer systems are done through GUI (Graphical User Interfaces).In order to design, develop and implementation of good interfaces, the knowledge of human-computer interaction principles and GUI programming skills are required. The course aims to provide students with the principles for predicting the usability of human computer interaction, and developing systematic methodologies for design and evaluating them .Writing of GUI specifications and implementation of GUI applications in the JAVA programming language is also covered.

Teaching Method: 30 hours Lectures (2 hours per week) + 15 hours Laboratory (1 per week).

Synopsis: Introduction. Human Aspects: Introducing a range of established and emerging theories, conceptual frameworks and methods of the human aspects of HCI; Knowledge representation and organisation, mental models, the utility of mental models in HCI, verbal metaphors, virtual interface metaphors, classification of interface metaphors for applications, conceptual models; Technology Aspects: Introducing a range of input and output devices and interaction styles, and discussing some higher level system design issues; Design Practice: Discussing the most popular design and evaluation methods and design support tools that are available to make HCI design user-centred, including principles and methods for user centred design, requirement gathering, task analysis and structured HCI design. Screen Design: An advanced topic that covers a theoretical model to support screen design. Hypertext, Multimedia and the World Wide Web: Covering major research issues in multimedia and the Web. GUI programming: Introduction to GUI, Java review exercises, GUI Components - Swing, Event processing, Mouse Events, Keyboard Events, Window Events.
Assessment: Two 1-hour midterm exams (15% each); Tutorial / Lab exercises (5%); Quizzes (5%); Project work (10%); 2-hours Final Exam (50%).
Textbooks:
1. Alan Dix, Janet Finlay, Gregory Abowd, and Russel Beale, Human-Computer Interaction, 2nd Edition, Prentice Hall, 1998.
2. B.Shneiderman, Designing the User Interface: Strategies for Effective Human Computer Interaction, Addison-wesley,1998
3. Y. Daniel Liang, Introduction to Java Programming 4th ed., Prentice Hall, 2002

4. Dietel and Dietel, Java How to Program, 3rd ed., Prentice Hall, 2000
5. Jenny Preece, Human-Computer Interaction, Addison Wesley, 1994
6. Bruce Eckel, Thinking in Java, 2nd ed, Prentice-Hall, 2000
7. Horstmann & Cornell, Core Java 2, Volume I – Fundamentals, Prentice-Hall, 1999
8. Horstmann & Cornell, Core Java 2, Volume II - Advanced Features, Prentice-Hall, 1999

………

760261, Database Fundamentals

3 hours per week, 3 credit hours, prerequisite: 721221
Aims: This module aims to provide students with an overview of database management system architectures and environments, an understanding of basic database design and implementation techniques, and practical experience of designing and building a relational database. The other aim of this module is to make students able to discuss/explain the importance of data, the difference between file management and databases. In addition, it enables students to apply conceptual design methodologies for a database and learn about architectures and environment of database management system (in particular the Ansi-Sparc model). This module requires a practical work, which is assessed by producing individual and group small projects.
Teaching Method: 30 hours lectures (2 hours per week) + 15 hours Laboratory (1 per week).
Synopsis: General introduction and database systems. Architectures: Ansi-Sparc model of databases, components of a database management system, DBMS functions schemas, levels of abstraction and mappings, role of the data dictionary, client-server systems, PC based systems, database servers, distributed systems. General database design: Design framework, mappings between abstractions, integrity, compromises, data vs functional design, non-functional considerations e.g. performance, volumes, user interface etc, security. Conceptual design: Requirement for conceptual design, Extended Entity Relationship model, object-oriented design. Logical design: The relational model, normalization, relational algebra, SQL, mapping conceptual design to relational, integrity, views, embedded SQL, PL/SQL, triggers. Relational databases: Mapping conceptual schema to a relational schema; entity and referential integrity; relational algebra and relational calculus. Database query languages: Overview of database languages; SQL; query optimization. Relational database design: Database design; functional dependency; normal forms; multivalued dependency; join dependency; representation theory. Physical design: Clustering, indexes, performance considerations. Transaction processing: Transactions, Concurrency techniques (locking, 2-phase locking, serialisability), recovery (rollback and commit, 2-phase commit), Transaction Processing Management Systems. Introduction to distributed databases: Distributed data storage; distributed query processing; distributed transaction model; concurrency control; homogeneous and heterogeneous solutions; client­server. Physical database design: Storage and file structure; indexed files; hashed files; signature files; b­trees; files with dense index; files with variable length records; database efficiency and tuning.

Assessment: Two 1-hour midterm exams (15% each) + Labwork and Assignments (20%) + 2-hours Final Exam (50%).
Textbooks:

1- Elmasri R. and Navanthe S. B., Fundamentals of Database Systems, 3rd edition, (ISBN 0-201542633), Addison Wesley, 1999.

2- C. J. Date, An Introduction to Database Systems,
………..

3.4 Advanced Modules

In this sub-section, the full descriptions of Level 3 modules are presented. Table (3-3) shows these modules and their descriptions are given below.

 Table (3-3) Advanced Modules in Computers and Information Systems Department

	Module Number
	Module Title
	Prerequisite

	750322
	Design and Analysis of Algorithms
	721221

	721320
	Software Architecture
	721222

	721420
	Software Construction and Evolution
	721322

	721430
	Software Testing
	721322

	721421
	Software Reverse Engineering
	721420

	721331
	Software Project Management
	721330

	721321
	Concurrent and Distributed Programming
	721221

	721324
	Advanced Object Oriented Programming
	721321

	721440
	Practical Training
	Department Agreement

	721441
	Research Project
	721440 + 721420

750322, Design and Analysis of Algorithms

3 hours per week, 3 credit hours, prerequisite: 721221
Aims: The aim of this module is to learn how to develop efficient algorithms for simple computational tasks and reasoning about the correctness of them. Through the complexity measures, different range of behaviours of algorithms and the notion of tractable and intractable problems will be understood. The module introduces formal techniques to support the design and analysis of algorithms, focusing on the underlying mathematical theory and practical considerations of efficiency. Topics include asymptotic complexity bounds, techniques of analysis, and algorithmic strategies. The solved problems are mainly business-oriented.
Teaching Method: 30 hours lectures (2 hours per week) + 15 hours Tutorials (1 per week).
Synopsis: Introduction to Algorithms: Idea of algorithms, algorithms and programs. Basic Algorithmic Analysis: Asymptotic analysis of upper and average complexity bounds; best, average, and worst case behaviors; big­O, little­o, W, and (notation; standard complexity classes; empirical measurements of performance; time and space tradeoffs in algorithms; using recurrence relations to analyze recursive algorithms. Proof of Correctness. Fundamental Algorithm Design Strategies: divide­and­conquer; greedy; backtracking; branch­and­bound; non-deterministic; numerical approximation. Lower Bound Theory: Sorting and searching, lower bound examples NP-Hard and NP-complete Problems: Basic Concepts, NP-Hard & NP-complete problems, examples.
Assessment: Two 1-hour midterm exams (15% each) + Course work (15%) + Tutorial contribution (5%); 2-hours Final Exam (50%).
Textbooks:
1- Sara Baase, Computer Algorithms: Introduction to Design and Analysis, Addison-Wesley, 1998

2- E. Horowitz et al. The Fundamentals of Computer Algorithms, Computer Press, 1992

3- G. Brassard, P.Bratley, Fundamentals of Algorithms, Prentice Hall, 1996

……..

721320, Software Architecture
3 hours per week, 3 credit hours, prerequisite: 721222
Aims: This module is concerned with the detailed software design after students learned some software design concepts.

Teaching Method: 30 hours Lectures (2 hours per week) + 8 hours Tutorials (1 per 2 weeks) + 7 hours seminars (1 per 2 weeks)

Synopsis: Design Methods, Design Patterns, Component design, Component interface design, Design Notations and Support tools, and Evaluation.
Assessment: Two 1-hour midterm exams (15% each) + Assignments (15%) + Seminars (5%) + 2-hours final exam (50%).

Textbook:
McConnel and Steve, Code Completed: a Practical Handbook of Software Construction, Microsoft Press, 1993.

……..

721420, Software Construction and Evolution
3 hours per week, 3 credit hours, prerequisite: 721322
Aims: The module examines issues, methods, and techniques associated with constructing software, given a high-level design, and for maintaining software over its lifetime.
Teaching Method: 30 hours Lectures (2 hours per week) + 8 hours Tutorials (1 per 2 weeks) + 7 hours seminars (1 per 2 weeks)

Synopsis: Language-oriented issues: Programming style and idioms, defensive programming; Construction technology: Selections of data structures, API design and use, code reuse and libraries, object-oriented issues, exception handling and security, middleware; Software construction tools: Application of abstract machine, automatic generation of code; Evolution processes; Evolution activities.

Assessment: Two 1-hour midterm exams (15% each) + Assignments (15%) + Seminars (5%) + 2-hours final exam (50%).
Textbooks:
1- Barbara Liskov and John Guttag, Program Development in Java, Addison Wesley, 2001, ISBN 0-201-65768-6.
2- J. Bloch, Effective Java: Programming Language Guide, Addison Wesley, 2001, ISBN 0-201-31005-8.

……..

721430, Software Testing
3 hours per week, 3 credit hours, prerequisite: 721322
Aims: This module introduces the role of verification and validation in the system life cycle.

Teaching Method: 30 hours Lectures (2 hours per week) + 7 hours Tutorials (1 per 2 weeks) + 7 hours seminars (1 per 2 weeks)

Synopsis: Role of verification and validation (V&V) in the system life cycle;. Techniques and tools; Quality assessment, testing, inspection, proof-of-correctness and relevant V&V standards; The student will be assigned chapters in the required tests to read and use in the projects and assignments.

Assessment: Two 1-hour midterm exams (15% each) + Assignments (15%) + Seminars (5%) + 2-hours final exam (50%).
Textbook:

Robert O. Lewis, Independent Verification and Validation, Publisher John Wiley; Sons, Inc. ISBN 0-471-57011-7
……..

721421, Software Reverse Engineering
3 hours per week, 3 credit hours, prerequisite: 721420
Aims: This module will focus on enabling software maintenance through reengineering.

Teaching Method: 30 hours Lectures (2 hours per week) + 8 hours Seminars (1 per week) +7 hours tutorials

Synopsis: This module will focus on enabling software maintenance through reengineering; computer-aided techniques to recover information from pre-existing systems; Refactoring, migration, Program transformation, Data reverse engineering, Object Oriented Reengineering.

Assessment: Two 1-hour midterm exams (15% each); Tutorial contribution (5%); Project work (15%); 2-hours Final Exam (50%).
Textbook:

………

721331, Software Project Management
3 hours per week, 3 credit hours, prerequisite: 721330
Aims: The module addresses issues involving the creation, development, and maintenance of software projects.

Teaching Method: 30 hours Lectures (2 hours per week) + 8 hours Tutorials (1 per 2 weeks) + 7 hours seminars (1 per 2 weeks)

Synopsis: This module includes project management, risk analysis, project planning, project administration, and configuration management.
Assessment: Two 1-hour midterm exams (15% each) + Assignments (15%) + Seminars (5%) + 2-hours final exam (50%).
Textbook:

Watts Humphrey, Managing the Software Process, Addison-Wesley, 1995
……..
721321, Concurrent and Distributed Programming

3 hours per week, 3 credit hours, prerequisite: 721221
Aims: The aim of this module is to study, learn, and understand the main concepts of concurrency. Hardware and software features to support concurrency, language features for concurrent and distributed systems, and concurrent and distributed algorithms.

Teaching Method: 37 hours Lectures (2 hours per week) + 8 hours Seminars (1 per 2 weeks).
Synopsis: Concurrent model of execution; interleaving; atomic operation; critical sections and mutual exclusion; deadlock; starvation; invariants. Cocurrent and distributed algorithms: producer-consumer; reader-writer problems; dining philosophers. Architectural features to support concurrent and distributed systems. Language features for concurrent and distributed systems. Performance evaluation.

Assessment: Two 1-hour midterm exams (15% each); Assignments (10%); Seminars (10%); 2-hours Final Exam (50%).
Textbook:
J. Bacon, Concurrent Systems: Database and Distributed Systems, 2nd Edition, (ISBN 0-201-177-676), Addison Wesley, 1998.
…….

721440, Practical Training

3 hours per week, 3 credit hours, prerequisite: Department Agreement
(Students can take this module on completing 90 credit hours at least).
Aims: The main aim of this module is that students will have practice in different industrial, commercial, administrative enterprises or companies. By this module, students may apply, in the real world, what they have learned during the first three years of their study in the University. The module also aims to teach students how to be self-confident when they face problems in their practical life.

Duration: At least 9 weeks (18 training hours per week at least). This may be distributed onto two semesters at most.
Regulations for Training: Students who register on practical training module should not register on modules with total credit hours more than 15 hours per week including the training module itself. Students must, therefore, be full-time trainees for at least 2 days per week. Students should arrange their timetable for other modules in a way that enables them to enrol in the pre-specified enterprise or company at least two days per week during the semester period.

Assessment: A committee from the Department supervises the students along their training period, where one supervisor is assigned on one group of students. The student should submit a technical report to this committee in 2 weeks time after completing the training session. In addition, the trainer body presents a report to the committee. The grade "pass" is given to students who complete the training requirements successfully and discuss their reports with the supervision committee.
………

721441, Research Project

3 credit hours, prerequisite: 721440 + 721420
General Descriptions:

The graduation project consists of a single project on which the student works over a period of 16 weeks that can be extended to 32 weeks (2 semesters). It is assumed that the student spends a nominal 192 hours (or 384 hours), the equivalent of 12 hours per week, working on this. There are three deliverables: demonstration, discussion, and a written report.

A student works under the supervision of a member of staff, the Supervisor. Most of the projects involve three students working together on the same project; apart from these, all students do different projects.

Aims: The aims for the project work done in the fourth year are:

1- To manage and execute a substantial project in a limited time.

2- To identify and learn whatever new skills are needed to complete the project.

3- To apply design and engineering skills in the accomplishment of a single task. In this context the skills mentioned may be in the general area of design and engineering in its broadest sense, or may be very specifically related to particular tools.

Textbook:

C. W. Dawson, The Essence of Computing Projects, A Student's Guide. ISBN 0-13-021972-X. Prentice Hall 2000.

The projects list and notes for guidance in carrying out a project are available in the Graduation Project Committee.

Assessment: Supervisor mark: 35%; Project Examination Committee mark: 65% (demonstration 20%, Report 25%, discussion 20%).

Syllabus
The occasional lectures are on topics of particular interest to students doing a project in their final year.

 Overview of projects and project assessment.

 Career advice.

 How to give a seminar.

 Writing English.

 How to give a demonstration.

 How to write a project report.

The project list and notes for guidance in carrying out a project are available in the Graduation Project Committee.

How to Choose a Project?

The list of projects for each semester will be available at the beginning of the semester. This list will contain the projects title and names of supervisors. The main selection and allocation of students to projects was made at the beginning of the semester. It is possible for students to propose their own projects, in which case, they should prepare a proposal and give it to the Graduation Project Committee (GPC).

Usually each project is suitable for more than one student (normally 3 students). Therefore, groups of three students should be arranged by students themselves. Each group of three students should make three choices of projects on the selection form obtained from the GPC.

Students are strongly encouraged to see the associated members of staff for projects they are interested in, to find out more about the projects.

OWN Projects

If a student has successfully negotiated a project - outside the list of projects given by the department - with the project committee, and possibly a prospective supervisor, he/she still gives another 2 choices, and code choice number 1 as "OWN"; this is likely to be the student's first choice, but it does not have to be.

Project Timetable

Students are expected to be in regular attendance working on their projects. They must co-operate in maintaining regular contact with their supervisors. It is an attendance requirement that students see their supervisors every week during term time. The formal project deliverables are a demonstration with discussion, and a written report.

The project lifecycle should follow a sensible methodology and include the various stages identified in any Software Engineering course.

Work on the project itself, in particular use of equipment and computing facilities, must finish at the end of the 12th week of the semester. In some cases, this can be extended to another semester.

The project report and the Auxiliary Appendix together with any relevant discs, logic circuit and wiring diagrams etc., must be handed in to the Graduation Project Committee after being signed by the supervisor by the end of the 15th week of the second semester. The GPC will announce a timetable for all project discussions. It forms a number of discussion committees, where each consists of two staff members and discusses one project.

The formal demonstrations and project discussion take place within one week after the submission of the report. The demonstration and discussion will contribute to the assessment of the "Quality of the project work".

The subdivision of marks within the project is:

The supervisor mark: 30
The Project committee mark: 70divided into

Demonstration, 20%

Discussion, 20%

Report, 30
Note that the 25% is awarded for the report judged as a report only, independent of the quality of the work being described.
Demonstration

The demonstration is an informal presentation of the results of the project to one of the project discussion committee. The students will say briefly, what the aims of the project are, and will then demonstrate the results for example by running the program or using the equipment constructed. The duration is about 20 minutes. See Guidance on demonstrations below for more information.

Report

The report is a formal written report on the project. This must be word processed. The report must follow a set of standards, given below, to facilitate its inclusion in the library and its usefulness for subsequent readers. Besides these, student will find it useful to read the slides of the talk given on writing, which is given in the lecture.

Copies of previous graduation project reports are available for reference in the Department.

Project documentation may be prepared on the PCs and printed on a laser printer. Students should hand in three soft cover copies of the report. After the discussion with the discussion committee, students should make all the correction that are suggested by the committee within the specified period of time under the supervision of their supervisors, then they should handed in three blue colour hard cover copies of the project. The title of the project, the University, Faculty, Department names, and students' names are all written in golden colour.

Overhead Projector

Students are expected to make reasonable use of the overhead projector or power point presentation on the day of their demonstrations.

Guidance on Demonstrations

A demonstration lasts about 20 minutes.

The group of students should aim to spend no more than 10 minutes summarising what their project is designed to achieve and showing what it currently does achieve. The rest of the time is spent in answering questions.

Note: Students should not attempt to demonstrate on the computer every last thing their program can do. A demonstration of its basic operation plus one or two highlights should suffice.

The mark given for the demonstration is based on the quality and quantity of the work attempted and the final state of achievement.

Students should have their working documents to hand and appropriate reference material, design workings, reasonably up-to-date listings, examples, tests, etc. They are not giving a 20-minute seminar; at least half the time must be available for questions.

Obviously, the kinds of things that are sensibly shown in a demonstration vary from project to project. If students are in doubt as to what to show, they should ask their Supervisors.

The discussion committee consists of two staff members. In general the supervisor of the project is not present.

In general, students should be available and ready to start their demonstrations at least within one week of their submission of the project.

Report Standards

1. The report is a formal written account of the project, satisfying certain standards for inclusion in a library.
Students must hand in all relevant work on the project by the end of the 11th week of the second semester. In addition to the report, this includes program listings, discs, detailed logic and wiring lists, etc. It is important to meet this deadline. When students hand this to their supervisors it must be accompanied by a signed version of a form supplied by the GPC. In the case of programming projects, program listings must be submitted in some bound form in an ``Auxiliary Appendix'' that does not need to satisfy any particular standard apart from being neat and tidy. It is suggested however that an economical listing would be double-sided on A4.

Here is a suggested structure for a report. Some projects may be rather different from others, and therefore have good reasons for not following these suggestions exactly. Supervisor guidance should anyway be sought!

o Introduction (1st chapter). What is the overall aim of the project. Why is it worth doing? Who will benefit from it? If the overall aim can be split into a number of subgoals, this is a possible place to do it. Finish with a chapter by chapter overview of the rest of the report.

o Background (2nd chapter). Analyse the background to the project. This should mention any previous work, here or elsewhere, and explain its relevance to the project. This could be an appropriate place to justify the choice of platform/software etc. used in the project.

o Description of the student's own work: Design and Implementation (a chapter each). The structure of these chapters may reflect the project lifecycle, but do not write a diary of progress. The design should be clearly described and justified. Supporting diagrams should be used where appropriate and helpful. Keep your design description fairly high level. When describing implementation, confine yourself to the important, difficult, or interesting bits. Do not include large chunks of code. Figures may well be useful.

o Results (1 chapter). What is the resulting system like to use. Include screen shots as appropriate.

o Testing and Evaluation (1 chapter). What testing was done? How confident are student that everything works correctly, and what evidence can they produce to support this claim? Have students evaluated the system against its aims? How did they make this evaluation?

o Conclusions (last chapter). What conclusions can students draw from the whole project? This should include a clear statement of what has been achieved overall, and will normally continue by suggesting areas of further related work, which could be done.

2. The report itself (apart from technical considerations) is worth 25% of the project mark. However, it forms the basis of an independent assessment of the project and therefore has greater effect than 25% in practice.

3. The report must be on paper of A4 size (210 x 297 mm). Only one side of paper should be used except in the Auxiliary Appendix.

4. The report must be produced using word processing facilities. The body of the report should be suitably divided into chapters and sections. Chapters, sections, pages, figures and appendices should all be numbered. Chapters, sections and appendices should have a heading. Each chapter should start on a new page. The body of the report should be preceded by a temporary title page, an abstract and a list of contents, and it should be followed by the references and then any appendices.
References to other published work should follow the conventions used in giving references in published work. e.g.: [1] P.J. Denning. Human error and the search for blame. Communications of the ACM 33(1): pp 6-7, January 1990. The abstract page must give the title, author, and supervisor, as well as an abstract of the project.

5. Straightforward and peripheral aspects of the work done should be mentioned only briefly, and description and explanation concentrated on important and interesting aspects. No extra credit is gained by writing a long report and excessive length is detrimental. More detailed description should be placed in appendices to the report. The appendices and/or the Auxiliary Appendix should contain any further documentation. Only the report itself will be held in the Department. Therefore, where important material is not included in it, e.g. because it is not convenient to produce it in A4 format, or it would be too bulky, it may sometimes be appropriate to include extracts in the report.
Copyright

In general, it is an infringement of copyright to reproduce any material, except short acknowledged quotations, from a published book or journal without the written permission of the publisher.

Except for the copying of material that is clearly from internal documents of the Department, any copying of books, journals, or documents required for the report should be checked with the supervisor before it is carried out.

Any material that is copied must be acknowledged as such. Attempting to present material written by others as your own is plagiarism and a serious disciplinary offence, as described in the University guidelines in the Undergraduate Handbook.

Marking Scheme for Reports

The report, as a document, is worth 25% of the project mark. These marks are divided among the following headings:

 Organisation (10%): balance of content, clarity, flow, relevance.

 Context (5%): discussion of background, aims, and significance of achievements.

 Literacy (5%): English, style, report manner.

 Presentation (5%): tidy layout, headings, references, diagrams.

………..

3.5 Elective Modules

Each student should select 2 modules out of a list of 18 modules according to his/her interest. The Department has a list of elective modules, which can be updated according to the staff expertise and the most recent trends in the field of Computer Science. The current list of such modules is shown in Table (3-4), where some modules are marked with (R) to indicate that these modules are research-oriented according to the staff expertise.

Table (3-4) Elective Modules in Computer Science Department

	Module Number
	Module Title
	Prerequisites

	721444
	Real Time Systems Design (R)
	750333 + 721322

	721443
	Telecommunication Software Design (R)
	721322 + 761340

	721340
	E-Commerce Systems Development
	721320

	721445
	CASE Tools Development
	721420

	721431
	Software Metrics and Measurements
	721430

	721442
	Software Engineering for Web Applications
	721322 + 731270

	721446
	Selected Topics in Software Engineering
	Dept. Agreement

	721487
	Formal Methods in Software Engineering
	721430

	750321
	Concepts of Programming Languages
	210104 + 721221

	750412
	Advanced Programming
	721322

721444, Embedded and Real Time Systems Design
3 hours per week, 3 credit hours, prerequisite: 750333 + 721322
Aims: This module is a survey of issues in the design and implementation of real time computer systems.

Teaching Method: 30 hours Lectures (2 hours per week) + 8 hours Seminars (1 per week) +7 hours tutorials

Synopsis: The module intends to recognize, classify, and formulate the hard and soft timing requirements of a software system, select an appropriate software architecture and combination of scheduling techniques to satisfy a set of timing requirements. Dedicated Real Time languages and Real Time Executives are also introduced.
Assessment: Two 1-hour midterm exams (15% each); Tutorial contribution (5%); Project work (15%); 2-hours Final Exam (50%).
Textbook:

 Burns A. and Wellings A., Real-Time Systems and Programming Languages, 2nd edition, Addison-Wesley, 1997
………

721443, Telecommunication Software Design
3 hours per week, 3 credit hours, prerequisite: 721322 + 761340
Aims: The module introduces the state art of software concepts, methods, and tools used for the design of advanced telecommunication services (AIN services), and of communication protocols.
Teaching Method: 30 hours Lectures (2 hours per week) + 8 hours Seminars (1 per week) +7 hours tutorials

Synopsis: Depth in signals and information theory; Telephony and telecommunications protocols; Related telecommunications systems knowledge.
Assessment: Two 1-hour midterm exams (15% each); Tutorial contribution (5%); Project work (15%); 2-hours Final Exam (50%).
Textbook:
Iakovos Venieris, Fabnozio Zizza, Object Oriented Software Technologies in Telecommunications, Thomas Magedanz, 2000
…….

721340, E-Commerce Systems Development

3 hours per week, 3 credit hours, prerequisite: 721320
Aims: The module provides breadth knowledge in Financial and E-Commerce fields (Accounting, Finance, E-commerce, and Security) and depth knowledge about the design of Financial and E-commerce systems.

Synopsis: E-commerce systems; Accounting; Finance; depth in security.
Assessment: Two 1-hour midterm exams (15% each); Tutorial contribution (5%); Project work (15%); 2-hours Final Exam (50%).
Teaching Method: 30 hours Lectures (2 hours per week) + 8 hours Seminars (1 per week) + 7 hours tutorials

Textbook:
………

721445, CASE Tools Development
3 hours per week, 3 credit hours, prerequisite: 721445
Aims: This module focuses on techniques used for the development of Computer Aided Software Engineering Tools: Analysis tools, Projects management tools, Configuration Management tools, Code generation.

Teaching Method: 30 hours Lectures (2 hours per week) + 8 hours Seminars (1 per week) + 7 hours tutorials

Synopsis: Introduction, CASE classification, CASE lifecycle, workbenches. Programming workbenches. Analysis and design workbenches. Meta-case workbenches. Environments. Integrated environments, platform and framework services. Software process: modeling, structure and methodologies
Assessment: Two 1-hour midterm exams (15% each); Tutorial contribution (5%); Project work (15%); 2-hours Final Exam (50%).
Textbooks:
1- Ian Somerville, Software Engineering, Addison-Wesley, 2000

2- M.J. Pont, Software Engineering with C++ & CASE Tools, Addison-Wesley, 1996.
APPENDIX A
THE PREREQUISITE RELATIONSHIPS

 BETWEEN MODULES

APPENDIX B

STUDY PLAN

OF

software rngineering Programme
�EMBED MSPhotoEd.3���

6. www.w3.org.

7. www.webdeveloper.com

8. www.javascriptmall.com

9. � HYPERLINK "http://www.javascripts.com/toc.cfm" ��www.javascripts.com/toc.cfm�

10. www.Deitel.com

PAGE
31

_1091434853.bin

