

Philadelphia University

Faculty of Information Technology

Department of Software Engineering

Course Catalogue

2016-2017

CONTENT

CHAPTER 1: INTRODUCTION TO CURRICULUM DESIGN

 1.1 Fundamental Concepts 2

 2.1 Format of the Module Coding Adopted 3

CHAPTER 2: CURRICULUM DESIGN, ORGANISATION, AND CONTENT

 2.1 Outlines of the Degree Program me 4

 2.2 Requirements for the Degree Programme 4

 2.3 Design, Organisation, and Content of Curriculum 4

CHAPTER 3: FULL DESCRIPTION OF MODULES

 3.1 Module Descriptor 7

 3.2 Introductory Modules 7

 3.3 Intermediate Modules 16

 3.4 Advanced Modules 22

 3.5 Elective Modules 31

APPENDIX A: THE PREREQUISITE RELATIONSHIPS BETWEEN MODULES 36

APPENDIX B: STUDY PLAN OF COMPUTER SCIENCE PROGRAMME 37

CHAPTER 1

INTRODUCTION TO CURRICULUM DESIGN

This catalogue contains a set of module descriptions and some information on the curriculum design and

organisation that mostly follow the Accreditation Standards sets by the Higher Education Accreditation

Commission (Jordan). It also follows the recommendations of the Software Engineering Curricula 2014

(SE2014). The SE2014 is a joint undertaking of the Computer Society of the Institute for Electrical and

Electronic Engineers (IEEE-SE) and the Association for Computing Machinery (ACM) that developed

curricular guidelines for undergraduate programs in computing.

These modules are offered at the Department of Software Engineering, Faculty of Information Technology/

Philadelphia University, to obtain the four years B.Sc. (honour) degree in Software Engineering (SE).

The information given in this catalogue is extracted for the Program Specifications for the Degree

programme. These specifications are published separately.

1.1 Fundamental Concepts

The most important concepts for understanding the module descriptions are as follows:

 The SE Body of Knowledge. The modules described in this Catalogue are defined in relation to a general

taxonomy of that portion of Software Engineering appropriate for an undergraduate curriculum. That

taxonomy represents the body of knowledge for Software Engineering. The body of knowledge is

organised hierarchically into three levels. The highest level of the hierarchy is the area, which represents a

particular disciplinary sub-field. The areas are broken down into smaller divisions called units, which

represent individual thematic modules within an area. Each unit is further subdivided into a set of topics,

which are the lowest level of the hierarchy.

 Core and Elective Units. Given the expanding scope of the computing discipline, it is impossible to

insist that every undergraduate learn all the topics that were at one time considered fundamental to the

field. The SE2014 report defines a minimal set of core units for which there is a broad consensus that the

material is essential to anyone obtaining an undergraduate degree in computer science. Because the core

is defined as minimal, the core alone cannot constitute a complete undergraduate curriculum. The

undergraduate program must include additional elective units from the body of knowledge. These elective

units could be chosen according to the needs of the individual student. Note that, occasionally,

timetabling difficulties restricts elective units.

 Credit Hours. To give a sense of the time required to cover a particular unit, a time metric should be

chosen. The system of study at Philadelphia University is based on the credit hours. The basic measure

unit of the curriculum is 3 credit hours module (or course unit). A module, which delivers at least 3 hours

per week of lectures or tutorial time, is worth 3 credit hours. Some modules may also provide an extra 1-

hour per week for laboratory, but the module is still classified as 3 credit hours. In general, over a 16

weeks semester, a typical module provides minimum 45 hours of contact time. The final week of the

semester is used for the examinations. The contact time corresponds to the in-class time required to

present the material in a traditional lecture oriented format. Note that this time does not include the

instructor's preparation time or the time students spend outside of class. As a general guideline, the time

required outside of class is twice the time of the in­class time. Thus, a unit that is listed as requiring 3

credit hours will typically entails a total of 9 hours (3 in class and 6 outside). It is also important to keep

in mind that the time associated with each unit represents the minimum number of hours required for

adequate coverage, and that it is always appropriate to spend more time than the listed minimum.

1.2 Format of the Module Coding Adopted

Each module in the SE programme is identified by a code and a title. For example, "721110 - Introduction

to Software Engineering" represents a module offered by Faculty of Information Technology, Department

of Software Engineering in the first year, its subject area is “Broad course covering many areas of SEEK”

(Software Education Knowledge).. Figure (1-1) illustrates the scheme of module coding and numbering,

where the “Introduction to Software Engineering” course is presented as an example.

Figure (1-1) Module Coding and Numbering Scheme

 Faculty number

 1 = Art, 2 = Science, .. 7 = Information Technology

 Department number within the Faculty

 21 = SE, 31 = MIS, 50 = CS , 70 = WE

 Year number

 1 = First year, 2 = Second year, 3 = Third year, 4 = Fourth year

 SE subjects area number

 1 = Broad courses, covering many areas of SEEK

 2 = Design, Modelling and Implementation courses

 3 = Process Oriented Courses

 4 = Project / Training

 5= CS core topics.

 7 2 1 1 1 0

 Identifying unit number within area

** SE=Software Engineering, MIS=Management Information Systems, CS=Computer Science, WE=Web

Engineering.

Table (1-1) displays the list of the accredited Software Engineering Knowledge Areas (KA)

Table (1-1) The Knowledge Areas (KA) of Software Engineering

No. of

KA
Name of KA

1. Computational Science and Algorithms (CA

2. Programming Languages (PL))

3. Main Computer Components (MCCO)

4. Software Engineering (SwE)

5+6

Information Sciences and Applications (ISA)

7. Supplementary Courses (SC)

9. Graduation Project (GP) / Practical Training (PT)

CHAPTER 2

CURRICULUM DESIGN, ORGANISATION, AND CONTENT

2.1 Outlines of the Degree Programme

Within the general area of Software Engineering (SE), the modules recognise several major subject themes.

This represents fundamental material on programming, algorithms and software engineering, the structure

and operation of computer systems including a high-level view of processing, memory, data communication

and input/output devices, plus operating systems and user interfaces. This includes the theoretical

foundations of computing, including programming languages and formal analysis of algorithms and

machines.

Details of each module are set out in Chapter (3).

2.2 Requirements for the Degree Programme

The SE programme is covered with different requirements. For obtaining the full award, students should

complete 46 modules, 44 X 3-credit hours courses, 1 X 1-credit hour course, and 1 X 2-credit hours course

(i.e. a total of 132 credit hours) summarised as follows:

Students should complete 46 modules (132 credit hours) summarised as follows:

- 9 modules (University requirements) (27 credit hours) (20.45 %)

- 9 modules (Faculty requirements) (27 credit hours) (20.45 %)

- 15 modules (Departmental Compulsories) (45 credit hours) (34.09%)

- 2 modules (Departmental Electives) (6 credit hours) (4.55 %)

 - 9 modules (Supportive modules) (27 credit hours) (20.45 %)

 The Faculty requirements and University requirements include some computer-oriented modules that

account to the Department requirements. (See Chapter (3), Table (3-1) for the titles of these modules).

2.3 Design, Organisation, and Content of Curriculum

 Organisation of Modules: The modules are organised into three levels according to the year at which

they occur in the curriculum:

1- Level 1: Introductory modules,

2- Level 2: Intermediate modules,

3- Level 3: Advanced modules.

Modules designated as Introductory are offered in the first and second years of the Department

curriculum. Modules listed as Intermediate are usually offered in the second or third year and build a

foundation for further study in the field. Modules designated as Advanced tend to be taken in later years

(third and fourth) and focus on those topics that require significant preparation in the earlier coursework.

For these modules, the Department wishes to orient such modules to its own areas of expertise.

While these distinctions are easy to understand in their own right, it is important to recognise that there is

no necessary relationship between the notions of core and elective - which apply to units in the body of

knowledge - and the level of the module. The introductory and intermediate modules concentrate on core

material, and the advanced modules include some core material and elective modules.

The point of organising the modules into three levels: Introductory, Intermediate, and Advanced is to

provide natural boundaries for defining implementation strategies. The CC2001 report defined many

strategies. Figure (2-1) shows these strategies and their relationship in the curriculum.

Figure (2-1) Module Levels and Implementation Strategies

 Introductory Imperative First Object First Functional First Breadth First Algorithmic First Hardware First

 Modules

 Intermediate Topic-Based Approach Compressed Approach Systems-Based Approach Web-Based Approach

 Modules

 Advanced Additional modules used to complete the undergraduate program

 Modules

- For Introductory Modules, the Department adopted the Imperative-First (or Procedural-First)

strategy. The imperative language is C. Then C# is adopted to introduce Object Oriented concepts.

- For Intermediate Modules, the Department adopted Topic-Based strategy to preparing for specific

areas.

- Some Advanced Modules are selected to attend the departmental objectives and the areas of expertise.

The SE programme is organised to cover some specified knowledge areas selected from the general areas

listed in Table (1-1). Table (2-1) shows the areas covered by the specialisation Modules (including those

computer-oriented modules taken from the Faculty and University requirements) and the number of

modules in each of them. Note that the ratios in Table (2-1) are calculated according to the total number of

modules (i.e. 44).

Table (2-1) Distribution of Specialized Courses over the Knowledge Areas (KA) of Software

Engineering

Area

Compulsory

Modules

Elective

 Modules
Total No.

of Modules
No. (No. /44) % No. (No./44) %

1- Computational Science and Algorithms

(CA)
3 06.81 0 0.00 3

2- Programming Languages (PL) 6 13.62 0 0.00 6

3- Main Computer Components (CA) 4 09.09 0 0.00 4

4- Software Engineering (SwE) 10 22.72 4 09.09 14

5- Information Science and Applications

(ISA)
6 13.62 0 0.00 6

6- Supplementary Courses (SP) 3 06.81 0 0.00 3

7- Graduate project (GP) / Practical Training

(PT)
1 02.72 0 0.00 1

 Total 33 75.00 any

2

04.54 37

 The Study Plan. The whole modules of the curriculum offered by the SE Department are shown in

Appendix A of this Catalogue.

 The Guidance Plan. The Department guides students in their registration and selection of modules during

the four years. The Department organizes a guidance plan that is shown in Table (2-2), where UR, FR, DR,

and SR indicate University Requirements, Faculty Requirements, Department Requirements, and

Supportive Requirements, respectively.

Table (2-2) Guidance Plan for the SE Curriculum

Guidance Plan
(132 Credit Hours)

(2016 - 2017)

Year Semester
Module

 Number
Module Title Prerequisite

Types of

Requirements

First

First

(18 Credit

Hours)

0110101
0130101

0750113

0731110

0250101

Arabic Language Skills (1)
English Language Skills (1)
UE (1)
Programming Fundamentals (1)

Introduction to Systems and Information Technology
Differentiation and Integration (1)

UR
UR
UR
FR
FR
SR

Second

(18 Credit

Hours)

0130102
0111101
0770110

0750114

0721110

0250104

English Language Skills (2)
National Education
Introduction to internet and web technology

Programming Fundamentals (2)

Introduction to Software Engineering

Discrete Structures

0130101

0750113

0750113+ 0731110

FR
UR
FR
FR
DR
SR

Second

First

(18 Credit

Hours)

0721220

0721230

0250231

0750231

0731213

Object Oriented Programming

Software Requirements
Introduction to Statistics and Probabilities
Design Of Logic Circuits

Introduction to World Wide Web Programming

UE(2)

0750114

0721110

0731110

0750114

FR
DR
SR
SR
FR
UR

Second

(18 Credit

Hours)

0721222

0721221

0750272

0750215

0731221
0721240

Software Modelling

Object Oriented Data Structures

Numerical Analysis

Visual Programming

Database Fundamentals
Computing Ethics

0721110

0721220 + 0250104

0250101+0750114

0721220+0731221

0721220
0731110

DR
DR
SR
FR
SR
FR

Third

First

(18 Credit

Hours)

0721320

0721330

0721350

0731340

0750322

Software Architecture

Software production

Computer Organization and Architecture

Fundamentals of Computer Networks

Design and Analysis of Algorithms
UE(3)

0721222

0721222

0750231

0721221

0721221+0250231

DR
DR
DR
SR
SR
UR

Second

(15 Credit

Hours)

0721322

0721331
0721324
0750333

Software Analysis And Design

Software Project Management
Advanced Object Oriented Programming
Principles of Operating Systems
UE(4)

0721230 + 0721320

0721330
0721220
0721350

DR
DR
DR
SR
UR

Fourth

First

(13 Credit

Hours)

0721420
0721430

0721438
0721448

Software Construction and Development
Software Testing
DE(1)
Practical Training
Research Project(1)

UE(5)

)متزامن(0721322+721324

0721322

750215+721320
Dept. Agree +90 hours

DR
DR
DR
DR
DR
UR

Second

(14 Credit

Hours)

072142
0721421

0721449

0111100

Graphical User Interface Design

Software Re-Engineering

Research Project(2)

DE(2)
Military Sciences(Or UE Non- Jordanians Students)

Dept.Agree+90+hours+0750099
0721420

0721448

DR
DR
DR
DR
UR

(UR) University Req. (UE) University Elective (FR) Faculty Req.

(DR) Dept. Req. (DE) Department Elective (SR) Supplementary Req.

CHAPTER 3

FULL DESCRIPTION OF MODULES

This chapter presents the full description of the Department modules and those modules from the Faculty and

University requirements that are computer-oriented modules.

3.1 Module Descriptor
The Department organised a format for the module descriptor that includes much information on the module.

This sub-section presents the components of the adopted module descriptor that are shown in Figure (3-1).

The University Quality Assurance Catalogue explains in details the components of the module descriptor.

Figure (3-1) Components of the Module Description

 Module Number, Module Title

 Providing Department:

 Module Coordinator(s):

 Year:

 Credit:

 Prerequisites: Required modules or background

 Aims:

 Teaching Methods:

 Learning Outcomes:

 Assessment of Learning Outcomes:

 Contribution to Programme Learning Outcome:

 Syllabus: Bulleted list providing an outline of the topics covered.

 Modes of Assessment:

 Textbook and Supporting Materials:

 Instructor:

3.2 Introductory Modules
Table (3-1) presents the Introductory (Level 1) modules whose full descriptions are given below.

Table (3-1) Introductory Modules in SE Department

Module Number Module Title Prerequisite

250104 Discrete Structures None

250101 Differentiation and Integration (1) None

250231 Introduction to Statistics and Probabilities None

750113 Programming Fundamentals (1) None

 750114 Programming Fundamentals (2) 750113

731110 Introduction to Systems and Information

Technology

None

721110 Introduction to Software Engineering 750113 +

731110

750231 Design of Logic Circuits 731110

731221 Database Fundamentals 721220

731340 Fundamentals of Computer Networks 721221

731213 Introduction to World Wide Web Programming 750114

770110 Introduction to internet and web technology None

0250104 Discrete Structures

Level: 1

Prerequisite: None

Aims:

This course is an introduction to Discrete Mathematics for students from the IT majors, covering

main topics in number theory, propositional logic, proof techniques, sets and relations, counting

techniques, and graph theory, together with selected applications in computer algorithms.

Teaching Methods: 38 hours Lectures (2-3 per week) + 10 hours Tutorial

Synopsis:

Logic: logic operators AND, OR, IFF, XOR, truth table, tautology, equivalence. Normal forms,

predicates and quantifiers. Sets: set operations, set identities, power set, cardinality, cross product,

power set. Modulo operation, divisibility, GCD and LCM, the Euclidean algorithm.

Combinatorics: the addition and multiplication principles, the Pigeonhole principle. Inclusion-

exclusion principles, permutations and combinations, permutations on multisets. Recurrence

relation: solving first order homogeneous sequences. Methods of proof: mathematical induction.

Relations: properties of relations, representation by digraphs, zero-one matrices, transitive closures.

Equivalence relations, partial order relations, total order, Hasse diagrams. Graph Theory: complete

graphs, complete bipartite, representations by adjacency matrix, incidence matrix, distance matrix.

Trees, minimal spanning trees, Euler circuit, the Chinese postman problem. Coloring algorithms,

planar graphs, maps and dual graphs.

Modes of Assessment:

Two 1-hour midterm exams (20% each); Assignments (20%); One 2-hours Final Examination (40%)

Textbook

 Amin Witno, Discrete Structures in Five Chapters, CreateSpace 2010

0250101 Differentiation and Integration

Level: 1

Prerequisite: None

Aims:

This course deals with the following main topics: differentiation of algebraic and transcendental

functions, an introduction to analytic geometry, applications of differentiation, and a brief

introduction to integration.

Teaching Methods: 38 hours Lectures (2-3 per week) + 10 hours Tutorial

Synopsis:

Functions: Representations of Functions. The Vertical Line Test. Symmetry. Linear Function.

Polynomials. Piecewise Defined Functions. Rational Functions. Root Function. Trigonometric

Functions. Combinations of Functions: Sum, Difference, Product, Quotient, Composition. Inverse

Functions: Functions. Horizontal Line Test. Inverse Trigonometric Functions. Exponential and

Logarithmic Functions. Hyperbolic Functions. Limits and Continuity: An Introduction to Limits.

Calculating Limits using the Limit Laws. Limits at Infinity and Infinite Limits. Limits Involving

(sinθ/θ). Continuous Functions. The Derivative: The Derivative as a Function. Differentiation Rules

and Higher Derivatives. The Chain Rule. Implicit Differentiation. Tangent Line. Applications of

Differentiation: L’Hospital’s Rule. Rolle’s Theorem; Mean-Value Theorem. Analysis of Functions:

Increase, Decrease, and Concavity. Relative Extrema; Graphing Polynomials. Absolute Maxima

and Minima. Integration: Anti-derivatives. Indefinite Integrals. Integration by Substitution. The

Definite Integral. The Fundamen.

Modes of Assessment:

Two 1-hour midterm exams (20% each); Assignments (20%); One 2-hours Final Examination (40%)

Textbook

 Howard Anton, Irl C. Bivens and Stephen Davis, Calculus: Early Transcendentals, 10th Edition,

John Wiley & Sons, Inc. 2013. − James Stewart, Calculus: Early Transcendentals, Brooks/ Cole.

250231, Introduction to Probability and Statistics

3 hours per week, 3 credit hours, prerequisite: none

Aims: This module aims to help students grasp basic statistical techniques and concepts, and to present real-

life opportunities for applying them.

Teaching Method: 30 hours Lectures (2 per week) + 15 hours Tutorials (1 per week)

Synopsis: Descriptive statistics and probability distribution; Sampling distribution Estimation for the mean,
variance and proportions; Testing for the mean, variance and proportions; Regression and correlation; One-
way analysis of variance.

Assessment: Two 1-hour midterm exams (15% each); Assignments/Quizzes (10%); Tutorial Contribution
(10%); 2-hours Final Exam (50%).

Textbooks:

1- D.C. Montgomery and .G.C. Runger, Applied Statistics and Probability For Engineers, 2
nd

 Edition,

Wiley, 2002

2- William, Probability and Statistics in Engineering and Management, Wiley, 2002

750113 Programming Fundamentals (1)

Course Hours: 3 hours per week, 3 credit hours (total of 48 hours)

Level: 1

Prerequisite: None

Aims:

This module aims to introduce computer programming and emphasis in problem solving on the

fundamentals of structured design using the principles of Top Down problem solving strategy

(divide and conquer). This includes development, testing, implementation, documentation.

The module also aims to explore the logic of programming via the algorithm concepts and

implement them in programming structures including functions, arrays, strings, and pointers.

.

Teaching Methods Duration: 16 weeks, 80 hours in total

Lectures: 32 hours (2 hours per week), Tutorials: 16 hours (1 per week),

Laboratories: 32 hours, 2 per week

Synopsis: problem solving strategies, algorithmic language to describe such problem solving,

introduces the principles of procedural programming, data types, control structures, data structures

and functions, data representation on the machine level. Various problems are considered to be

solved using C-like procedural programming language.

Assessment: Two 1-hour midterm exams (15% each); lab (30%); one 2-hours Final Examination (40%)

Textbook:

- P. Deitel & H. Deitel, C++ How to program, Pearson Education Limited, 2013.

- Guttag, John. Introduction to Computation and Programming Using Python. Spring 2013

edition. MIT Press, 2013. ISBN: 9780262519632. - MIT

750114 Programming Fundamentals (2)

Course Hours: 3 hours per week, 3 credit hours (total of 48 hours)

Level: 1

Prerequisite: 750113

Aims:

This module aims to introduce computer programming and emphasis in problem solving on the

fundamentals of structured design using the principles of Top Down problem solving strategy

(divide and conquer). This includes development, testing, implementation, documentation.

The module also aims to explore the logic of programming via the algorithm concepts and

implement them in programming structures including functions, arrays, strings, and pointers

.

Teaching Methods Duration: 16 weeks, 80 hours in total

Lectures: 32 hours (2 hours per week), Tutorials: 16 hours (1 per week),

Laboratories: 32 hours, 2 per week

Synopsis: Functions definition, Parameters definition and passing , One dimensional array, Two

dimensional array, use of main operations of a sequential file: open, reset, rewrite, read, write, eof,

Introduction to Class and object, Generics, components reuse, component programming

Various problems are considered to be solved using C-like procedural programming language.

.

Assessment: Two 1-hour midterm exams (15% each); lab (30%); One 2-hours Final Examination (40%)

Textbook
D.S. Malik, Thomson, C++ Programming: From Problem Analysis to Program Design, Sixth

Edition, Course Technology, 2011

0731110, Introduction to Information Systems and Technology

3 hours per week, 3 credit hours, prerequisite: None

Course (module) description:

This course provides an introduction to information systems and information technology, information

systems development concepts, and application software. It identifies the basic types of business information

systems, the major steps of the systems development process and some of the strategies employed to lower

costs or improve service. It explains how information is used in organizations and how IT enables

improvement in quality, timeliness, and competitive advantage. It also defines the competitive advantages,

types of roles, functions, and careers available in IS.

Course (module) objectives:

Students should be acquainted with handling and managing data and information in business organizations

and to understand the meaning of “Information Systems and technology and their effects on organizations

and the different types of business information systems and the development life cycle.

Students must learn about different Computer Hardware and Software and different types of computer

networks. Students should know how to deal with e-commerce

Synopsis: Information theory, dynamic systems, concepts and applications in business organizations,

information theory and applications, information systems, information systems in management,

management information systems, information technology and computer information systems.

Course/ module components:

1.Books (title , author (s), publisher, year of publication)

Information systems today : managing in the digital world, Joe Valacich, Christoph Schneider,

Harlow: Pearson Education Limited, 2014.

Information Systems Essentials, Editors: Stephen Haag, Maeve Cumming; Published: McGraw-Hill/Irwin,

Inc, 2009, Third edition.

 Support material (s): slides

 Study guide (s) (if applicable).

 Homework and laboratory guide (s) if (applicable).

Learning outcomes:

 Knowledge and understanding

1. Know and understand a wide range of principles and fundamentals of Information Systems and

Information Technology.

2. The application of IS and IT.

 Cognitive skills (thinking and analysis).

Basic analytical steps of Information Systems and defining the specifications of the IT required in business

contexts.

 Communication skills (personal and academic).

1. Plan and undertake a small individual project in IS and IT fields.

2. Use the scientific literature effectively and make discriminating use of Web resources.

3. Present seminars in IS and IT fields.

 Practical and subject specific skills (Transferable Skills).

1. Use appropriate computer-based tools.

2. Work effectively with and for others.

3. Strike the balance between self-reliance and seeking help when necessary in new situations.

4. Get knowledge about self learning on the long run.

Assessment instruments:

 Short reports, presentations, Short research projects, Quizzes, and/or Home works (20%)

 First exam (20%)

 Second exam (20%)

 Final exam (40%)

721110, Introduction to Software Engineering

Credit Hours: 3 hours per week (48 hours in total)

Level: 1

Prerequisite: 0750113 + 0731110

Teaching Methods: Lectures (40 hours), Tutorials (8hours)

 Aims: This course aims to:
o Teach students the skills needed to execute commercial projects.

o To provide students with the necessary conceptual background for undertaken advanced

studies in software engineering, through specialized software engineering courses.

Synopsis: Software Engineering; Software Process; Software Development Life Cycle.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:
1. Software Engineering: A practitioner's Approach, R.S. Pressman, Mc Graw Hill,

2010.

2. A Concise Introduction to Software Engineering, Pankaj Jalote, Springer, 2008

750231, Logic Circuit Design

Providing Department: Computer Science, Faculty of IT

Module Coordinator(s):

Year: 2

Credit: 3 credit hours
Prerequisite: 0731110

Aims: This module introduces you to the design and implementation of digital circuits. Topics include:

combinational and sequential circuit analysis and design, digital circuit design optimization methods using

random logic gates, multiplexers, decoders, registers, counters and programmable logic arrays. Laboratory

experiments will be used to reinforce the theoretical concepts discussed in lectures. The lab experiments will

involve the design and implementation of digital circuits. Emphasis is on the use computer aided tools in the

design, simulation, and testing of digital circuits.

Teaching Methods: 41 hours Lectures (2-3 per week) + 4 hours Tutorials (1 per 3 weeks) + 3 hours

Laboratory (1 per 4 weeks)

Learning Outcomes:

A student completing this module should be able to:

1. Define the problem (Inputs and Outputs), write its functions. (A, B, C)

2. Minimize functions using any type of minimizing algorithms (Boolean Algebra, Karnaugh map or

Tabulation Method). (A, B)

3. Implement functions using digital circuit (Combinational or Sequential). (A, B)

4. Have knowledge in analyzing and designing procedures of Combinational and Sequential circuits. (B,

C)

5. Have knowledge in designing and analyzing circuits with Flip-Flops, Counters and Registers. (B, C)

6. Work effectively with others. (D)

7. Use simulation software, for testing the designed circuit. (C, D)

Assessment of Learning Outcomes

Learning outcomes (1), (2), and (3) are assessed by examinations, tutorial and in the laboratory. Learning

outcomes (4), (5), and (6) is assessed by course work/workshops. Learning outcomes (7) is assessed in the

laboratory.

Contribution to Programme Learning Outcomes:

A1, A3, A5, B1, B3, C6, D3, D6

Synopsis: Introduction to Digital logic Design; Binary Systems and Codes: Binary Numbers, Octal and

Hexadecimal Numbers, Number Base Conversions, Arithmetic Operation with different Bases,

Complements, Signed Binary Numbers, Binary Codes: BCD, Gray, ASCII and EBCDIC; Binary Logic and

Logic Gates: AND, OR and NOT; Boolean Algebra and Logic Gates: Basic Definition, Basic Theorems,

Boolean Functions; Standard Forms: Minterm and Maxterm, Simplification of Boolean Functions using SOP

and POS; Logic Operations: NAND, NOR, Exclusive-OR and Equivalence, Integrated Circuits; Gate-Level

Minimization: The Map Method, Two- and Three-Variable Map, Four-Variable Map, Product of Sums

Simplification, Don’t-Care Conditions, NAND and NOR Implementation, The Tabulation Method,

Simplification of Boolean Functions using Tabulation Method; Analysis and Synthesis of Combinational

Circuits: Combinational Circuits, Analysis and Design Procedure, Binary Adders-Subtractor, Decoders and

Multiplexers; Analysis and Synthesis of Sequential Circuits: Sequential Circuits, Latches, Flip-Flops: RS, D,

JK and T, Analysis of Clocked Sequential Circuits, Design Procedure; Registers and Counters: Registers,

Shift Registers, Synchronous Counters, Ripple Counters; Sequential Circuits with Programmable Logic

Devices: Introduction, Random-Access Memory, Memory Decoding, Read-Only Memory, Programmable

Logic Array.

Modes of Assessment:

Two 1-hour midterm exams (20% each); Assignments (20%); one 2-hours Final Examination (40%)

Textbook and supporting material:

1- Morris Mano, Digital Logic, Prentice-Hall, 2012

2- Morris Mano, Charles R. Kime, Logic and computer design fundamentals, Pearson Prentice Hall,

2004

3- Basavaraj,B., Digital fundamentals, New Delhi: Vikas Publishing House, 1999.

4- Kandel Langholz, Digital Logic Design, Prentice Hall, 1988.

5- Rafiquzzaman & Chandra, Modern Computer Architecture, West Pub. Comp., 1988.

731221, Database Fundamentals

3 hours per week, 3 credit hours, prerequisite: 721220
Teaching Methods: 26 hours Lectures (average 2 per week) + 16 hours Laboratory (1 per week) + 6 hours

Tutorials (1 each fortnight)

Aims: This module aims to give the students the main concepts of database, design the database, database

models, normalization techniques, query languages, object oriented database, query optimization and

database and the web. Further the students have to practice and write some applications regarding the

database.

Learning Outcomes:

On completion of this module, student should be able to:

1- Define the general concepts, objectives and the database models

2- Understand the importance of data, and the difference between file management and databases. (A)

3- Understand the design of database management system architectures and environments. (A)

4- Know the principals of database design. (A)

5- Design a database as free-standing applications

6- Apply conceptual design methodologies, in particular conceptual design using Extended Entity

Relationship modelling. (A, B, C, D)

7- Apply the relational model and mappings from conceptual designs, in particular normalizations. (A, B, C,

D)

8- Explain physical and performance related design considerations. (A)

9- Understand transaction processing. (A)

10- Discuss and apply SQL and the Oracle DBMS. (A, C, D)

11- Work effectively with others.

12- Invoke the database applications with the World-Wide Web browser

Assessment of Learning Outcomes:

Learning outcomes (1) through (7) are assessed by examinations. Learning outcomes (3), (4), and (8) are

assessed by projects design and implementation.

Contribution to Programme Learning Outcomes:

A2, A3, A4, A5, B1, B2, B3, C1, C2, C6, D1, D3

Synopsis: Introduction to Data base and DBMS; Database Models; Database Design; Relational Algebra and

Relational Calculus; Query Languages (SQL); DB normalization; Database Integrity and Security; Indexing

Techniques; Query Optimization; Distributed Data Base; Object-Oriented Database

Textbooks and Supporting Material:

Modern database management , Jeffrey A. Hoffer, V. Ramesh, Heikki Topi, Boston: Pearson, 2016, 12th ed.

global edition

Modes of Assessment: Two 1-hour midterm exams (20% each); Lab work (10%); Assignments (10%); Final

Examination: written exam (40%)

731340 Fundamentals of Computer Networks

3 hours per week, 3 credit hours, prerequisite: 721221

Teaching Methods: 40 hours Lectures (2-3 per week) + 8 hours Tutorials

Aims: The aims of this module are to introduce the basic principles of computer network and how the

network is working. Type of the topologies and the technologies are also given. The module, however, does

not focus on the detailed study of mathematical aspects. Bottom up is the approach used to teach this

module.

Learning Outcomes:

On completion of this module, students will be able to

1. Discriminate and appraise different switching technologies

2. Enumerate, differentiate and appraise different WAN and LAN networks

3. Breakdown communication networks into their components

4. Explain the abstract concepts related to layered communication system architecture

5. Select an appropriate communication network architecture

6. Select and devise an appropriate network interconnection solution

7. Outline the communication software implementation issues

8. Configure the network devices like switch and router

Contribution to Programme Learning Outcomes:

A2, A3, A5, B1, B2, C1, C2, C6, D3, D5

Synopsis: Networks Models, OSI Model, TCP/IP, Transmission Media and Transmission modes,

Multiplexing, Switching Technology: Packet Switching, Virtual Circuit Switching, Cell Switching, Switch

Technologies, LAN and WAN.

Textbook and Supporting Material:

1- Data Communications and Networking, ,Behrouz A. Forouzan, Mc GrawHill, 4th edition 2012

2- Computer Networks and Internets, Douglas E. Comer, Prentice Hall Pub., 2010, 4th Edition

3- Business Data Communications, W. Stallings, Prentice Hall, 5th edition, 2005

Modes of Assessment: Two 1-hour midterm exams (20% each) + Lab work and Coursework (15%) +

Tutorial Contribution (5%) + Final (unseen) exam (40%)

……..

0731213, Introduction to Web Programming

3 hours per week, 3 credit hours, prerequisite: 0750114

Course description

This course is intended to give the student advanced issues in website design and implementation. At the

course completion, students will have the know-how of designing and implementing web-based applications,

completely database-driven web sites.

The course involves two main parts:

 Advanced client-side programming.

 Advanced server-side programming.

Course objective

On successfully completing the module, the students are expected to have gained good knowledge of:

 Implementing advanced server-side programming

 Improving personal productivity concepts through web authoring.

Synopsis: HTML: Basics and Programming; Script Languages; Web Servers: Basics and Programming:

Introduction to Web Servers, PHP, Working with Data Types and Operators, String conversion and type

juggling, Type casting, Building Functions and Control Structures, Manipulating Arrays, Working with

Databases and MYSQL, Regular Expression and Validation.

Course components:

- Books (title, author (s), publisher, year of publication)

 Don Gosselin, Diana Kokoska, Robert Easterbrooks, PHP Programming with MySQL. Boston: Course

Technology/Cengage L:earning, 2011.

Paul Deitel, Harvey Deitel, Abbey Deitel ,Internet and World Wide Web : how to program. Harlow: Pearson

Education Limited, 2012.

- Support material (s)

 The world's largest web development site: www.w3schools.com

- Study guide (s) (if applicable).

- Homework and laboratory guide (s) if (applicable).

Teaching methods

Lectures, discussion, groups, tutorials, problem solving, etc.

Learning outcomes:

 Knowledge and understanding.

 Cognitive skills (thinking and analysis).

 Communication skills (personal and academic).

 Practical and subject specific skills (Transferable Skills).

Assessment instruments:

 Short reports, Assignments, Projects, Quizzes, and/or Home works (20%)

 First exam (20%)

 Second exam (20%)

 Final exam (40%)

……

Course Title: Introduction to Internet and Web Technologies

Course code: 0770110

Internet, Internet services, internet applications and tools. World Wide Web, WWW applications

and tools, mark-up language, e-mail, web browsers, Web-based research and information resources,

World Wide Web Consortium (W3C) ,creating web pages, search engines, FTP.

 Books (title , author (s), publisher, year of publication)

 Web Technology Theory And Practice Paperback – 2012 by M Srinivasan (Author)

 Web Programming And Internet Technologies: An E-Commerce Approach 1 Pap/Cdr Edition

by Porter Scobey (Author), Pawan Lingras (Author) 2012

……

……

3.3 Intermediate Modules

The Intermediate (Level 2) modules are listed in Table (3-2) and their full descriptions are given below.

 Table (3-2) Intermediate Modules in Software Engineering Department

Module Number Module Title Prerequisite

721220 Object Oriented Programming 750114

http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=M+Srinivasan&search-alias=books&field-author=M+Srinivasan&sort=relevancerank
http://www.amazon.com/Porter-Scobey/e/B005XTKVZC/ref=dp_byline_cont_book_1
http://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Pawan+Lingras&search-alias=books&field-author=Pawan+Lingras&sort=relevancerank

721221 Object Oriented Data Structures 721220 +250104

750215 Visual Programming 721220+0731221

721320 Software Architecture 721222

721322 Software Analysis and Design 721230 + 721320

721350 Computer Organization and Architecture 750231

750333 Principles of Operating Systems 721350

721240 Computing Ethics 731110

721230 Software Requirements 721110

721222 Software Modelling 721110

750322 Design and Analysis of Algorithms 721221+250231

Object-Oriented Programming – 721220

Credit Hours: 3 hours per week (48 hours in total)

Level: 3

Prerequisite: 721220

Teaching Methods: Lectures 48 hours, 3 per week, Tutorials(10 from 48 hours), Lab (15 hours)

 Aims: This course aims to:
develop an understanding of the principles of the object-oriented paradigm; to provide familiarity with

approaches to object-oriented modelling and design; to provide a familiarity with the syntax, class

hierarchy, environment and simple application construction for an object-oriented programming

language. The module emphasizes developing fundamental programming skills in the context of a

language that supports the object-oriented.

Synopsis:, Classes, objects, Methods, visibility, Properties, Static methods and variables, Scope,

Overloading, Data Abstraction, Encapsulation, Constructors, Composition, Inheritance, Polymorphism,

Abstract classes and methods, Interfaces, and Exception handling.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:

1- Deitel & Deitel, C# 2010 for Programmers, Publisher: Prentice Hall, 2011, ISBN-10: 0132618206 | ISBN-

13: 9780132618205.

2- Purdum, Jack, " Beginning C# 3.0 : an introduction to object oriented programming ", Wiley Publishing,

Inc., 2007

--

721221, Object Oriented Data Structures

Credit Hours: 3 hours per week (48 hours in total)

Level: 2

Teaching Methods: Lectures (40 hours), Tutorials (8hours)

Aims:
The objectives of this module are to:

1- Provide a clear introduction to the concepts and the importance of standard data structures.

2- Teach students how to use existing data structures (through suitable APIs), adapt/modify or

design new data structures to solve simple and more complex problems.

3- Enhance the programming skills of students.

Synopsis: Data Structures, Data types, Abstract Data types, List, Stack, Queue, Tree, Binary Search Tree,

Heap, Hash Table, Graph

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:
Data Structures Outside-In With Java, Sesh Venugopal, Prentice Hall, 2006

750215, Visual Programming

Providing Department: Computer Information Systems, Faculty of IT

Module Coordinator(s):

Year: 2

Credit: 3 credit hours

Prerequisite: 721220

Aims: This module aims to provide students capabilities to design and implement the applications using

visual programming through Microsoft Visual Studio .Net and VC# to develop different types of applications

using .Net platform.

Teaching Methods: 32 hours Lectures (2 per week) + 12 hours Tutorials (on average 1 per week) + 16 hours
Laboratory (1 per week) + 4 hours Seminar

Learning Outcomes:

On completing this module you should:

1. Have a clear understanding of what comprises a correct program in C# through .Net frame components

(A)

2. Have a clear understanding of the object-oriented terminology used to describe features of C# and VC#

project with their visual components. (A, C)

3. Have an informal understanding of the operational semantics of object-oriented programs in terms of

creation of objects and messages passing between difference interfaces. (A)

4. Be able to design, code, and test C# project, which meet requirements expressed in English. (B, C, D)

5. Be able to understand the documentation for, and make use of, the MSDN library. (A, C)

6. Have a good understanding of the different focus at various stages of the development process. (A, C, D)

7. Have knowledge of design GUI with visual components guidelines. (A, B)

8. Be able to apply the guidelines in learning outcome (7) to a real design problem and justify how they have

been used. (A, B)

9. Be able to write a project in C# and VC#, which implements the design in learning outcome (8). (C).

10. Be able to work effectively alone or as a member of a small group working on some programming tasks.

(C, D)

Assessment of Learning Outcomes:

Learning outcomes (1), (6), and (8) are assessed by examination and laboratory; learning outcomes (2), (3),

and (7) are assessed by tutorial and examination; learning outcomes (4), (5), (9) and (10) are assessed in the

laboratory.

Contribution to Programme Learning Outcomes:

A2, A3, A4, B3, C5, C6, D1, D2, D4, D5

Synopsis: Introducing the Microsoft .NET Platform: .NET Platform, .NET and Windows DNA, .NET

Architecture Hierarchy, .NET Platform features, Multilanguage Development, Platform and Processor

Independence, .NET Components, Common Type System CTS, Common Language Specification CLS ,

.NET Base Class Library (BCL); Visual Studio.NET IDE: Visual Studio.NET, Components of VS.NET,

Design Window, Code Window, Server Explorer, Toolbox, Docking Windows, Properties Explorer, Solution

Explorer, Object Browser, Dynamic Help, Task List Explorer, Features of VS.NET, XML Editor, Creating a

Project, Add Reference, Build the Project, Debugging a Project; Introducing C# Programming: Data

Types, Value Types, Reference Types, Control Structures (if, if-else, switch, for, while, do while, break,

continue, return, goto), Understanding Properties and Indexers Accessing Lists (Array) with Indexers,

Events, Exception Handling, Using OOP (Object, Class, Constructor/destructor, Inheritance, Polymorphism,

Encapsulation); Windows Forms: Windows Forms, Adding Controls, Adding an Event Handler, Adding

Controls at Runtime, Attaching an Event Handler at Runtime, Writing a Simple Text Editor, Creating a

Menu, Adding a New Form, Creating a Multiple Document Interface, Creating a Dialog Form, Using Form

Inheritance, Adding a TabControl,, Anchoring Controls, Changing the Startup Form, Connecting the Dialog,

Using the ListView and TreeView, Controls, Building an ImageList, Adding a ListView, Using the Details

View, Attaching a Context Menu, Adding a TreeView, Implementing Drag and Drop, Creating Controls,

Creating a User Control, Adding a Property, Adding Functionality, Writing a Custom Control, Testing the

Control, Enhancing the Control, Sub classing Controls; Graphics and Multimedia: Graphics Contexts and

Graphics Objects, Color Control, Font Control, Drawing Lines, Rectangles and Ovals, Drawing Arcs,

Drawing Polygons and Polylines, Advanced Graphics Capabilities, Introduction to Multimedia, Loading

Displaying and Scaling Images, Animating a Series of Images, Windows Media Player, Microsoft Agent;

ADO.NET: ADO.NET Architecture, Understanding the ConnectionObject, Building the Connection String,

Understanding the CommandObject, Understanding DataReaders, Understanding DataSets and

DataAdapters, DataTable, DataColumn, DataRow, Differences between DataReader Model and DataSet

Model, Understanding the DataViewObject ,Working with System.Data.OleDb, Using DataReaders, Using

DataSets, Working with SQL.NET, Using Stored Procedures, Working with Odbc.NET, Using DSN

Connection; Multithreading: Thread States: Life Cycle of a Thread, Thread Priorities and Thread

Scheduling, Thread Synchronization and Class Monitor, Producer/Consumer Relationship without Thread,

Synchronization, Producer/Consumer Relationship with Thread Synchronization, Producer/Consumer

Relationship: Circular Buffer; Networking: Introduction, Establishing a Simple Server (Using Stream

Sockets), Establishing a Simple Client (Using Stream Sockets), Client/Server Interaction with Stream-Socket

Connections, Connectionless Client/Server Interaction with Datagrams, one Server multi-Clients system;

ASP.NET: Introducing the ASP.NET Architecture, ASP.NET Server Controls, Working with User,

Controls, Custom Controls, Understanding the Web.config File, Using the Global.asax Page,

Modes of Assessment: Two 1-hour midterm exams (20% each); Assignments (20%); One 2-hours Final

Examination (40%)
)

Textbooks and reference books:

1- H. M. Deitel & J. Deitel, “ C# How to Program”, Prentice Hall, 2014 fifth edition

2- A.Turtschi et.al. “ Mastering Visual C# .Net”, Sybex 2002

3- Eric Gunnerson, “A Programmer’s Introduction to C#”, Apress 2000

4- Anders Hejlsberg et.al. “ C# Language Reference”, Microsoft Corporation 2000

5- Erric Buttow et al. “C#, your visual blueprint for building .Net application”, Hungry Minds 2002

6- Charles Carroll, “Programming C#”, O’Reily & Associates 2000

Karh Watson “Beginning C#” Wrox Press 2001.

721320, Software Architecture

Course Hours: 3 hours per week (48 hours in total)

 Prerequisite: 721222

Level: 3

Teaching Method: Lectures: 40 hours, Tutorial: 8 hours

Aims:
Successful design of complex software systems requires the ability to describe, evaluate, and create systems

at an architectural level of abstraction. This course introduces architectural design of complex software

systems. The course considers commonly-used software system structures, techniques for designing and

implementing these structures, models and formal notations for characterizing and reasoning about

architectures, tools for generating specific instances of an architecture, and case studies of actual system

architectures. It teaches the skills and background you need to evaluate the architectures of existing systems

and to design new systems in principled ways using well-founded architectural paradigms.

Synopsis: Architecture in Context, Architecture Styles, Styles and Greenfield

Design, Software Connectors, Modelling and Notations, Visualizing Software

Architectures, Implementing Architectures.

Two 1-hour midterm exams (20% each); Course work (20%); Assignments (20%); Final Exam (40%)

Textbooks:

 1. Title: Software Architecture: Foundations, Theory, and Practice

Author(s)/Editor(s): R. N. Taylor, N. Medvidovic, and E. M. Dashofy

Publisher: John Wiley & Sons, 2010.

ISBN-10: 0470167742

ISBN-13: 978-0470167748

 2. Software Architecture in Practice
 Author(s)/Editor(s): Len Bass, Paul Clements and Rick Kazman

 Publisher: Addison-Weslt, 2007

721322, Software Analysis and Design

Course Hours: 3 hours per week (48 hours in total)

 Prerequisite: 721230 + 721320

Level: 3

Teaching Method: 32 hours Lectures +16 hours Tutorials.

Aims: This course completes the student knowledge on Software Design. This course introduces the

major design goals (correctness, reusability, robustness, flexibility). Then the course focuses on basic

concepts of software architecture, component technologies, architectural design principles and design

patterns. The objective of this course is to introduce and detail the factors and the practices that tend to

produce good quality software designs.

Synopsis: Software Design: purpose, motivation, design levels, Software Design Principles(Flexibility, Reusability,

Efficiency), Object-oriented analysis (Unified Process), Design Patterns, Component Technologies,

Assessment: Two 1-hour midterm exams (20% each) + Assignments (15%) + Tutorial contributions (5%) +
2-hours final exam (40%).

Textbooks:

 1. Introduction to Software Engineering Design: Processes, Principles and Patterns withUML2,

 Christopher Fox, Addison Wesley, 2007

2. Object Oriented Modelling and Design with UML, Michael Blaha, James Rumbaugh, Person

Editions, 2005

 3. Software Design: from programming to architecture, Braude Eric, John Wiley & sons, 2004.

 4. The Art of Software Architecture: Design Methods and Techniques, Stephen T. Albin , John

 Wiley Sons, 2003.

 ………..

Computer Organization and Architecture – 721350
Course Hours: 3 hours per week (48 hours in total)
Prerequisite: 750231
Level: 3
Teaching Method: 32 hours Lectures +16 hours Tutorials.

Aims:

This course aims to:

- Provides the basic knowledge about the various digital components used in the organization

and design of digital computers.

- Show the general steps that a designer must go through in order to design an elementary

basic computer.

- Dealing with the organization and architecture of the central processing unit.

- Presenting the organization and architecture of input-output and memory.

Synopsis: Register Transfer and Micro operations Concepts, Basic Computer Organization and design,

Basic Computer Programming, Central Processing Unit Architecture, Pipelining Concepts, Organization

and Architecture of Input-Output and Memory.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:

1. William Stallings, Computer Organization and Architecture (10th Edition), 2016.

2. P. Godes, D. A. Godes, Computer Architecture and Organization, 2014.

………..

750333, Principles of Operating Systems

Providing Department: Computer Science, Faculty of IT

Module Coordinator:

Year: 3

Credit: 3 credit hours

Prerequisite: 750332

Prerequisite for: 750334

Aims:

The aims of this module are to introduce the basic principles of computer systems organization and

operation; to show how hardware is controlled by program at the hardware/software interface; to outline the

basic OS resource management functions: memory, file, device (I/O), process management, and OS

security/protection. Two concrete examples of operating systems are used to illustrate how principles and

techniques are deployed in practice.

Teaching Method: 40 hours Lectures (2-3 per week) + 8 hours Tutorials (1 each fortnight)

Learning Outcomes:

On completing the module, students should:

1- Have knowledge and understanding of the overall structure and functionality of a modern operating

system and of its interactions with the underlying computer hardware and overlying user-program. (A)

2- Have knowledge and understanding of the operation of the following major components of an operating

system: the I/O device manager; the memory manager; the process manager; the file manager; OS

security/protection manager (A)

3- Have the ability to design and implement (an emulation of) a prototypical process manager. (B, C)

4- Be aware of how fundamental techniques in (1) and (2) are applied in practice in two distinct modern

operating systems. (A)

Assessment of Learning Outcomes:
Learning outcomes (1) and (2) are assessed by examination. Learning outcome (3) is assessed via course

project. Learning outcome (4) is not formally assessed.

Contribution to Programme Learning Outcomes

A3, B3, C5.

Synopsis: Operating System overview; Operating System Structures: System components, Operating system

services, System calls, System structures, Virtual machine; Processes: Process concept, Process scheduling,

Operation on process, Cooperative process, Inter process communication; Threads: Thread overview,

Benefits, User and kernel threads, Multithreading model, Solaris 2 threads; CPU Scheduling: Basic concept,

Scheduling criteria, Scheduling algorithm, Thread scheduling, Algorithm evaluation; Process

synchronization and mutual exclusion: Critical section problem, Two task solution, Synchronization

hardware, Semaphore, Classical synchronization problem; Deadlock and starvation: System model,

Deadlock characterization, Method for handling deadlock, Deadlock prevention, Deadlock avoidance,

Deadlock detection, Recovery from deadlock; Memory management: Background, Swapping, Paging,

Virtual memory, Background, Demand paging, Page replacement, Allocation of frame, Thrashing; File

system implementation and management: File concept, Access method, Directory structure, Protection, File

system structure, Allocation method, Free space management, Directory implementation, Efficiency and

performance, I/O management and disk scheduling, Application I/O interface, Kernel I/O subsystem, I/O

request handling, Disk structure, Disk scheduling, Disk management, Swap space management, Disk

reliability, Stable storage implementation

Modes of Assessment:

Two 1-hour midterm exams (20% each); Assignments (20%); One 2-hours Final Examination (40%)

Textbooks and Supporting Material:

1- Operating System Concepts, 9th Edition International Student Version

Abraham Silberschatz, Peter B. Galvin, Greg Gagne
ISBN: 978-1-118-09375-7 Addison-Wiley , 2013

2- A. Silberschatz and Peter Galvin, Applied Operating Systems Concepts, First edition, John Wiley & sons,

Inc, 2000

3- J. Bacon, Concurrent Systems: Database and Distributed Systems, 2
nd

 Edition, (ISBN 0-201-177-676),

Addison Wesley, 1998.

4-A. S. Tanenbaum, Modern Operating Systems, Prentice Hall, 1992

………..

0721240, Computing Ethics

Credit Hours: 3 hours per week (48 hours in total)

Level: 2

Prerequisite:
Teaching Methods: Lectures (40 hours), Tutorials (8hours)

 Aims: This course aims to:

o Introduce the ethical foundations of good professional practice in computing.

o Understand the basic concepts of ethics, moral, law, ergonomics and profession

o Be able to recognize and distinguish different kinds of ethical arguments, Know why

professions have codes of conduct.

o Have a basic knowledge of Intellectual Property Rights (IPR) in relation to Copyright and

Patents.

o Be aware of the requirements for professionalism in respect of the work of the professional

societies and their codes of conduct and practice

o Be able to explain the nature of privacy and how it is protected by different Acts.

Synopsis: Information Technology Changes , Impacts of IT Changes , Introduction to Ethics, Ethics

Philosophical Issues, Privacy, Intellectual Property Rights, Computer Crimes, Work environment ,

Evaluating and Controlling the technology

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:
1. Sara Baase, A Gift of Fire: Social, Legal and Ethical Issues for Computer and the

Internet, 4
nd

 th., 2012

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Abraham+Silberschatz
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Peter+B.+Galvin
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Greg+Gagne

………..

………..

721230, Software Requirements

Credit Hours: 3 hours per week (48 hours in total)

Level: 2

Prerequisite: 721110

Teaching Methods: Lectures (40 hours), Tutorials (8hours)

 Aims: This course aims to:
o Introduce the process, activities, concepts, and techniques needed in the eliciting, analyzing,

documenting, validating, and managing requirements for complex systems.

o Explain how requirements engineering fits into a broader systems development process.

o Provide an understanding of the main challenges in requirements Engineering.

Synopsis: Requirements engineering Discipline; Requirement Engineering Process; System

Requirements, Software Requirements; Functional Requirements, Non Functional Requirements,

Quality Requirements; Domain understanding, Requirements Elicitation, Requirements Evaluation,

Negotiation, Specification, Requirements Documentation, Requirement Verification and Validation;

Goal oriented and Agent oriented Requirements Engineering.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:
1. Klaus Pohl, Chris Rupp, “Requirements Engineering Fundamentals”, Rocky Nook

Publisher. 2015.

2. Axel van Lamsweerde, “Requirements Engineering: From System Goals to UML

Models to Software Specifications”, Wiley, 2009.
………..

………..

721222, Software Modeling

Credit Hours: 3 hours per week (48 hours in total) + 1h (Lab practice)

Level: 2

Prerequisite: 0721210

Teaching Methods: Lectures (40 hours), Tutorials (8hours)

 Aims: This course aims to:

o Introduce early in the Software Engineering curricula the concept of modeling, its motivations

and benefits (lectures).

o Study several modeling frameworks in Software Engineering (lectures).

o Study UML constructs.

o Provide good modeling practices through various real case studies (tutorials, workshops, and

laboratory).

Synopsis: Software Modeling; structural |Modeling; Interaction Modeling; Behavioral Modeling.

Assessment: Two 1-hour term exams (20% each), Laboratory works and Quizes (20%), Final

Examination: 2-hours written exam (40%).

Textbooks:
1. Software Modeling and Design: UML, Use Cases, Patterns, and Software

Architectures; Hassan Gomaa, Cambridge University Press, 2011.

2. Object Oriented Modeling and Design with UML, M. Blaha, J. Rumbaugh, second

edition, 2005, Pearson, Prentice Hall

750322, Design and Analysis of Algorithms

Providing Department: Computer Science, Faculty of IT

Module Coordinator(s):

Year: 3

Credit: 3 credit hours

Prerequisite: 750272 + 721221

Aims:

The aim of this module is to learn how to develop efficient algorithms for simple computational tasks and

reasoning about the correctness of them. Through the complexity measures, different range of behaviours of

algorithms and the notion of tractable and intractable problems will be understood. The module introduces

formal techniques to support the design and analysis of algorithms, focusing on both the underlying

mathematical theory and practical considerations of efficiency. Topics include asymptotic complexity

bounds, techniques of analysis, and algorithmic strategies.

Teaching Methods: 38 hours Lectures (2 per week (including two 1-hour midterm exams)) + 10 hours

Tutorials (average 1 hour per week)

Learning Outcomes:
When completing this module, you should be able to:

1. understand basic ideas about algorithms (A)

2. develop efficient algorithms for simple computational tasks (B)

3. reason about the correctness of algorithms (B)

4. understand the concepts of time and space complexity, worst case, average case and best case

complexities and the big-O notation (A)

5. compute complexity measures of algorithms, including recursive algorithms using recurrence relations

(B)

6. understand the range of behaviours of algorithms and the notion of tractable and intractable problems

(A, B)

7. know and understand a wide range of searching and sorting algorithms (A, B)

Assessment of Learning Outcomes:

All learning outcomes are assessed by examinations and tutorials. Learning outcomes (4), (5), and (6) are

assessed by examinations and coursework.

Contribution to Programme Learning Outcomes:

A1, A2, B1, B2, B3

Synopsis: Introduction, Algorithm definition, Algorithm Analysis; Mathematical Induction; Summation

Techniques; Recurrence Relations; Design & Analysis of Algorithms: Divide and conquer, Greedy

Algorithm, Dynamic Programming, Backtracking, Branch-Bound; Lower Bound Theory; Sorting and

Searching; NP-Complete Problems: Basic Concepts, NP-Hard & NP-Complete Problem

Modes of Assessment:

Two 1-hour midterm exams (15% each); Tutorial contributions (5%), Coursework (15%); Final written

Examination (50%)

Textbooks and Supporting Material:

1- Jon Kleinberg, Eva Tardos, Algorithm design, Boston: Pearson Education Limited, 2014.

2- Alwan, Raad F., Design and Analysis of Algorithms, Dar Majdalawi Publication & Distribution, Amman,

2010.

3- Sara Baase, Computer Algorithms: Introduction to Design and Analysis, Third Edition, Addison-Wesley,

2000.

4- Udi Manber, Introduction to Algorithms: a Creative Approach, Addison-Wesley, 1997.

5- T. Cormen, et.al., Introduction to Algorithms, 1999.

6- R. Sedgewick, Algorithms in C++, 2002.

3.4 Advanced Modules
In this sub-section, the full descriptions of Level 3 modules are presented. Table (3-3) shows these modules

and their descriptions are given below.

 Table (3-3) Advanced Modules in SE Department

Module Number Module Title Prerequisite

721420 Software Construction and Development 721322+721324

721430 Software Testing 721322

721421 Software Re-Engineering 721420

721331 Software Project Management 721330

721330 Software Production 721222

721324 Advanced Object Oriented Programming 721220

721423 Graphical User Interface Design 721320+750215

721438 Practical Training 90h +Department

Agreement

721448 Research Project1

90h +Department

Agreement

721449 Research Project2 721448

721420, Software Construction and Development

Credit Hours: 3 hours per week (48 hours in total)

Level: 2

Teaching Methods: Lectures (40 hours), Tutorials (8hours)

Aims:
This course aims to:

- The needed strategies for mapping the architecture and design of applications into source

code

- Develop code with errors avoidance techniques

- To discuss the latest technologies for building software applications and knowing which of

these technologies to use depending on the requirement specifications of our software

problem.

- Preparing the student to pursue their career in software construction by introducing to them

the needed software skills to achieve this target.

Synopsis: Implementation Strategies; Mapping design outcomes into Code/ derivation of code

from design models; Mapping the Object Model to a Database Schema; Construction tools

technology/ Techniques and tools supporting code development API use, Code reuse and libraries;

Choosing the appropriate programming language; Defensive Programming; Code-Tuning Strategies

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:

Object-Oriented Software Engineering Using UML, Patterns, and Java, 3rd Edition, 2010;

Bernd Bruegge, Adjunct, Carnegie Mellon University; Allen H. Dutoit, Technical University

of Munich

0721430, Software Testing

Credit Hours: 3 hours per week (48 hours in total)

Level: 4

Prerequisite: 0721322

Teaching Method: Lectures (40 hours), Tutorials (8hours)

Aims: This course aims to address topics in the verification and validation (V&V) of software. This

course aims to teach in depth study of verification and validation strategies and techniques as they

apply to the development of quality software. Topics include test planning and management, testing

tools, technical reviews, formal methods and the economics of software testing.

Synopsis:

Software testing; Test data & test cases & Testing Levels; Testing Strategies; Software quality

metric; Testing Tools, Assessing and improving the validation process; Functional & Structural

testing; Integration and system testing; Equivalence Class Testing; Performance and Load

Testing; Web based Testing; Regression Testing

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:

1. Software Verification and Validation for Practitioners and Managers, by Steven R. Raktitin, ed.

Artech House, 2nd Edition, ISBN 1-58053-296-9, 2001.

2. Managing the Testing Process, Rex Black , John Wiley & Sons , August 2009 , 0470404159

Software Re-Engineering – 721421

Credit Hours: 3 hours per week (48 hours in total)

Level: 3

Prerequisite: 721220

Teaching Methods: Lectures (48 hours), Tutorials, (10 from 48 hours)

 Aims: This course aims to:
provide students with knowledge about: software re-engineering, different re-engineering techniques used in

program understanding and software maintenance, and aware of the challenges inherent in the re-engineering

of software systems.
.

Synopsis:, Software evolution, Software maintenance; Software reengineering, Reverse engineering, Code

refactoring, Code slicing, Code migration, Program comprehension, Restructuring programs, Program

translation, Data reverse engineering, Legacy Systems.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:

1. A. Afshar Alam, Tendai Padenga, Application Software Reengineering, Pearson Education India, 2010

2. Salvatore Valenti, Successful Software Reengineering, IRM Press, 2002

 ………

0721331, Software Project Management

Credit Hours: 3 hours per week (48 hours in total)

Level: 3

Prerequisite: 0721330

Teaching Methods: Lectures (40 hours), Tutorials (8hours)

 Aims: This course aims to provide students with knowledge and skills for wide range of principles

and tools available to the software engineer and software manager, such as planning, organization,

and monitoring of all software life-cycle phases. Also, solve a wide range of problems related to the

software management. Moreover, students could plan and undertake a major individual project, and

prepare and deliver coherent and structured verbal and written technical report.

Synopsis:

Management concepts; General project management, Classic management models; Project

management roles, Enterprise/Organizational management structure Software management

types; application of computing in a business context; Principles and tools available to the

software manager; Project planning; Project personnel and organization; Project control;

Software configuration management; Software Quality

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:

1. B. Hughes and M. Cotterell. Software Project management. Fifth edition, McGraw-Hill, 2012.

2. Pro Web Project management. Justin Emond and Chris Stenis, 2011, APress

--

721330, Software Production

Credit Hours: 3 hours per week (48 hours in total)

Level: 3

Prerequisite: 721222

Teaching Method: Lectures (40 hours), Tutorials (8hours)

Aims: This course aims to provide students with knowledge and skills for designing, creating,

analyzing and applying software development processes. It introduces and details the commonly

used software process models (Prescriptive software process models). It also covers the modeling

aspect of software processes (Descriptive software process models).

Synopsis: Basic software processes concepts (process, activity, work product, role, agent, product

flow, process script,…); Concepts of Descriptive and Prescriptive process models; Families of

prescriptive process models: Waterfall, Prototyping, Iterative and Incremental approaches,

Evolutionary approaches, Spiral software process, RUP, Agile software processes (XP, Scrum,…);

Software Process Modeling languages (MVP-L, SPEM).

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:

 1. Software Process Definition and Management, J. Munch et al, Springer Verlag

 Berlin Heidelberg, 2012

 2. Software Engineering: A Practitioner Approach. R. S Pressman, M. Bruce, Mc

 Graw Hill, 2015

Advanced Object Oriented Programming – 721324

Credit Hours: 3 hours per week (48 hours in total)

Level: 3

Prerequisite: 721220

Teaching Methods: Lectures (48 hours), 3 per week, Tutorials/Lab(10 from 48 hours)

 Aims: This course aims to:

provide students with knowledge about: manipulate several core data structures in python, advanced

issues related to writing classes and methods, understand the basic ideas behind class hierarchies,

polymorphism, and programming to various interfaces, error handling, basic programming of

paradigms including object-oriented, imperative, functional programming, use an existing library to

implement a graphical user interface and develop multithreading programming, develop Python

scripts for publishing on the Web.

Synopsis:, Object-oriented, Paradigms, Sequences, Containers, Dictionary, Functional

programming, Error handling, Class, API libraries, Event-Driven, Inheritance, polymorphism.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:

Guttag, John V. (Author)

New Delhi: PHI Learning Private Limited, 2014

ISBN : 978-81-203-4866-0

Introduction to computation and programming using python

--

721423, Graphical User Interface

Credit Hours: 3 hours per week (48 hours in total)

Level: 3

Prerequisite: 0721320+0761220

Teaching Method: Lectures (40 hours), Tutorials (8hours)

Aims: This course aims to provide students with knowledge and skills for designing, creating,

analyzing and applying systematic methodologies for design and evaluating GUI. Writing of GUI

specifications and implementation of GUI applications in the any programming language is also

covered. The course also aims to provide students with the principles for predicting the usability of

human computer interaction.

Synopsis: human-computer interaction; Human aspects; Technology aspects; User Interface

development cycle; Usability and Design; basic GUI principles; Design practice; Designing

Websites using the Design Process; User Support; Screen design; Evaluation Techniques

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:

B.Shneiderman,Designing the User Interface:Strategies for Effective Human Computer

Interaction,Addison-wesley,1998

Soren Lauesen , User Interface Design: A Software Engineering Perspective, Addison Wesley,

2005

721438, Practical Training

3 hours per week, 3 credit hours, prerequisite: Department Agreement
(Students can take this module on completing 90 credit hours at least).

Aims: The main aim of this module is that students will have practice in different industrial, commercial,

administrative enterprises or companies. By this module, students may apply, in the real world, what they

have learned during the first three years of their study in the University. The module also aims to teach

students how to be self-confident when they face problems in their practical life.

Duration: At least 9 weeks (18 training hours per week at least). This may be distributed onto two semesters
at most.

Regulations for Training: Students who register on practical training module should not register on modules

with total credit hours more than 15 hours per week including the training module itself. Students must,

therefore, be full-time trainees for at least 2 days per week. Students should arrange their timetable for other

modules in a way that enables them to enrol in the pre-specified enterprise or company at least two days per

week during the semester period.

Assessment: A committee from the Department supervises the students along their training period, where
one supervisor is assigned on one group of students. The student should submit a technical report to this
committee in 2 weeks time after completing the training session. In addition, the trainer body presents a
report to the committee. The grade "pass" is given to students who complete the training requirements
successfully and discuss their reports with the supervision committee.

………

721448, Research Project (1)

Credit Hours: 1 hour per week (16 hours in total)

Level: 4

Prerequisite: Exceeding 90 credit hours + Department Agreement

Teaching Methods: Lectures (16 hours), Tutorials/Lab (7 hours)

 Aims: The aims for the project course are:

1- To learn real project definition, analysis, design, implementation, testing, writing, and

presenting

2- To manage and execute a substantial project in a limited time.

3- To identify and learn whatever new skills are needed to complete the project.

4- To apply design and engineering skills in the accomplishment of a single task.

Synopsis: Proposed treatment; Work Plan; Requirement elicitation; Requirement modelling

analysis; SRS document; Prototype; Software architecture

Assessment: Two 1-hour term exams (20% each), Quiz (20%), Final Examination: 2-hours written

exam (40%).

Textbooks:
C. W. Dawson, The Essence of Computing Projects, A Student's Guide. ISBN 0-13-021972-X.

Prentice Hall 2000.

Bernd Bruegge, Allen Dutoit, Object-Oriented Software Engineering: Using UML, Patterns, and

Java, Prentice Hall, 2003
Michael R. Blaha, James R Rumbaugh, Object-Oriented Modeling and Design with UML, Prentice

Hall, 2005

721449, Research Project (2)

Credit Hours: 2 hour per week (32 hours in total)

Level: 4

Prerequisite: 721448

Teaching Methods: Lectures (16 hours), Tutorials/Lab (7 hours)

 Aims: The aims for the project course are:

5- To learn real project definition, analysis, design, implementation, testing, writing, and

presenting

6- To manage and execute a substantial project in a limited time.

7- To identify and learn whatever new skills are needed to complete the project.

8- To apply design and engineering skills in the accomplishment of a single task.

Synopsis: Work Plan; SRS document; Low level (detailed) Design; Code Construction; Testing

technique; Writing Techniques.

Assessment: Two 1-hour term exams (20% each), Quiz (20%), Final Examination: 2-hours written

exam (40%).

Textbooks:
C. W. Dawson, The Essence of Computing Projects, A Student's Guide. ISBN 0-13-021972-X.

Prentice Hall 2000.

Bernd Bruegge, Allen Dutoit, Object-Oriented Software Engineering: Using UML, Patterns, and

Java, Prentice Hall, 2003
Michael R. Blaha, James R Rumbaugh, Object-Oriented Modeling and Design with UML, Prentice

Hall, 2005

3.5 Elective Modules

Each student should select 2 modules out of a list of 4 modules according to his/her interest. The Department

has a list of elective modules, which can be updated according to the staff expertise and the most recent

trends in the field of SE. The current list of such modules is shown in Table (3-4), where some modules are

marked with (R) to indicate that these modules are research-oriented according to the staff expertise.

Table (3-4) Elective Modules in Computer Science Department

Module Number Module Title Prerequisites

0721443 Secure Software Construction 0721430

0721439 Special Topics In Software Engineering 721322

0721445 Introduction to Cloud Computing 0721322

0721422 Web Software Engineering 0721420+0731213

0721443, Secure Software Construction

Credit Hours: 3 hours per week (48 hours in total)

Level: 4

Prerequisite: 0721430

Teaching Method: Lectures (40 hours), Tutorials (8hours)

Aims: This course aims to teach security issues in different phases of software development

(requirements, architecture, design, coding, testing). It also covers threats, vulnerabilities and

attacks for Web and Mobile applications.

Keywords:

Risk Analysis, Risk Assessment, Systemic threats, Threat Modelling, Secure software development

life cycles, Securing Web and Mobile Applications.

Textbooks:

1. Enterprise Software Security: A Confluence of disciplines, Kenneth R. Van

Wyk, Dan S. Peters, Diana L. Burley, Addison-Wesley Professional, 2014.

2- Secure Software Design, Theodor Richardson, Charles Thies, Jhones and

 Barlett Learning Editors, 2013.

3- Core Software Security: Security at the Source, James Ransome, Anmol Misra,

 Auerbach Publications, 2013.

4. - Secure and Resilient Software Development , Mark S. Merkow,

 Lakshmikanth Raghavan, Auerbach Publications, 2010.

721439, Special Topics in Software Engineering

Credit Hours: 3 hours per week (48 hours in total)

https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&text=Dan+S.+Peters&search-alias=books&field-author=Dan+S.+Peters&sort=relevancerank
http://www.amazon.com/Lakshmikanth-Raghavan/e/B003TYUI6U/ref=dp_byline_cont_book_2

 Level: 4

 Prerequisites: 721322

 Teaching Methods: Lectures, Tutorials

 Aims:

This course is intended to address a special topic selected among emergent topics of software

engineering. The selected topic may concern new software engineering paradigms, or development

methodology, or software process, or techniques, or languages or software tools.

Synopsis: key words specific to the selected topic.

Assessment: Two 1-hour term exams (20% each), Assignments (20%), Final Examination: 2-hours

written exam (40%).

Textbook: Recent books that cover the selected topic.

--

721445, Introduction to Cloud Computing

Credit Hours: 3 hours per week (48 hours in total)

Level: 4

Prerequisite: 721322

Teaching Methods: Lectures (36 hours), Tutorials/Lab (12 hours)

 Aims: This course aims to provide students with a basic knowledge about the Cloud

 computing paradigm, its relevant concepts and associated technologies. The Cloud

 computing paradigm is introduced from the software engineering perspective.

Synopsis: Cloud Computing paradigm, Cloud Computing architecture, Platform as a Service,

Software as a Service, Service-oriented computing, map-reduce paradigm, Schema-free databases,

multi-tenancy.

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:

1. Gautam Shroff, “Enterprise Cloud Computing: Technology, Architecture, Applications”,

Cambridge University Press, 2014.

2. Armando Fox, David Patterson, “Engineering Software as a Service: An Agile Approach

Using Cloud Computing”, Strawberry Canyon LLC Publisher, 2013.

-- ------------------

0721422, Web Software Engineering

Credit Hours: 3 hours per week (48 hours in total)

Level: 2

Teaching Methods: Lectures (40 hours), Tutorials (8hours)

Aims: The World Wide Web has become a major delivery platform for information resources. Many

applications continue to be developed in an ad-hoc way, contributing to problems of usability,

maintainability, quality and reliability. This course examines systematic, disciplined and quantifiable

approaches to developing of high-quality, reliable and usable web applications. The course introduces

the methodologies, techniques and tools that support their design, development, evolution, and

evaluation.

The goals of the course are as follows:

 To be able to analyze and design comprehensive systems for the creation, dissemination,
storage, retrieval, and use of electronic records and documents.

 To learn and use some of the client-side and server-side languages used to manipulate
information on the World Wide Web – i.e. ASP.NET, and Javascript.

 To learn techniques and evaluation metrics for ensuring the proper operability,

maintenance and security of a web application.

Synopsis: Web Engineering; Requirements Engineering for Web Applications; Modeling Web

Applications; Web Application Architectures; Technology-aware Web Application Design; Usability of

Web Applications; Technologies for Web Applications; Web Project Management; The Web

Application Development Process; Security for Web Applications

Assessment: Two 1-hour term exams (20% each), Project/Quiz (20%), Final Examination: 2-hours

written exam (40%).

Textbooks:

1. Engineering Web applications, by Sven Casteleyn et. al. Springer 2009.
2. Web Engineering: A Practitioner's Approach by Roger Pressman and David Lowe, McGraw‐Hill,

2009.
3. HTML and CSS: Comprehensive 7th edition, by by Denise M. Woods and William J. Dorin.

Publisher: Cengage Learning; (2012) ISBN-10: 1133526144

4. Internet & World Wide Web How to Program, 5/e

Paul J. Deitel, Harvey M. Deitel, Abbey Deitel, Pearson Education 2012

http://www.amazon.com/Denise-M.-Woods/e/B00DWYEJRG/ref=dp_byline_cont_book_1
http://www.amazon.com/William-J.-Dorin/e/B00DWXKA7A/ref=dp_byline_cont_book_2

APPENDIX A

THE PREREQUISITE RELATIONSHIPS

 BETWEEN MODULES

APPENDIX B

STUDY PLAN

OF

SOFTWARE ENGINEERING PROGRAMME

