

Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences Second Semester, 2017/2018

Course Syllabus				
Course Title:		Course code:		
Analytical Chemistry		0510113		
Course Level:		Course prerequisite:		
2nd year		0221101		
Lecture Time L	ocation	Credit hours: 2 credits		
1. Monday/Wednesday 8:15-9:15	9310	Contact hours: 2 hours		
3. Sunday/Tuesday 11:00-12:00	9422			
4. Monday/Wednesday 12:45-1:45	9310			

Academic Staff Specifics				
Name	Rank	Office Number and Location	Office Hours	E-mail Address
Dr. Ahmad Najjar	Assistant Professor	203 Faculty of Nursing building	S,T 10-11 & 12-1 M,W 9-11	a.najjar@philadelphia.edu.jo

Course description

This course is devoted to the exploration of principles of qualitative and quantitative analysis, methods expressing of the concentrations, principles of volumetric analysis, acid-base equilibria in aqueous solutions, acid-base titration and their applications in both solutions. The precipitation equilibria, Reduction–oxidation equilibria, and applications, also gravimetric methods.

Course objectives

- Demonstrate the importance of substance determination and explain the difference between qualitative and quantitative analysis;
- Provide students with a strong theoretical and practical grounding in the principles and practices of analytical chemistry, including different types of titrations and their applications and the fundamentals of gravimetric analysis.
- Illustrate the appropriate steps of the analytical process from sampling to results presentation for different kinds of matrices

Course components

- Books (title , author (s), publisher, year of publication)
 - 1. Analytical Chemistry by Gary D. Christian, 7th edition (2014), John Wiley and Sons. ISBN : 9781118805169
 - 2. Fundamentals of Analytical Chemistry by Skoog, West, Holler, and Crouch, 9th edition (2013), Brooks/Cole, ISBN; 9780495558286
- Support material (s) (vcs, acs, etc). N.A.
- Study guide (s) (if applicable) N.A.
- Homework and laboratory guide (s) if (applicable). Handouts containing problems to solve related to each topic will be provided to the students.

Teaching methods:

Lectures, discussions and problem solving.

Learning outcomes:

- Knowledge and understanding
 - At the end of this module, student will be able to:
 - Have a background in those chemical principles that are of particular importance to analytical chemistry.
 - Be subjected to traditional techniques of analytical chemistry including different types of titration processes and precipitation process
 - Acquire confidence in his/her ability to obtain high quality analytical data and to understand difference between accuracy and precision
- Cognitive skills (thinking and analysis).
 - Distinguish between various traditional analytical methods and suitability of applying
 - Learn the basis of different errors sources and how to overcome them by a successful titration process
 - Recognize the properties of primary standard substances and standard solutions preparation and dilutions
 - Understand how indicators are working in different titration processes in addition to different reactions conditions for each type of titration
 - Understand all steps which must be done during gravimetric analysis and how to overcome all contamination types in different matrices.
- Communication skills (personal and academic).
 - Develop the ability to think and work in a team and also in individual manner.
 - Ability to perform the mathematical calculations and statistical data presentation
 - Develop skills related to use computers, spreadsheet applications and internet for calculations, report and homework writing and for literature research.
- Practical and subject specific skills (transferable skills). N.A.

Assessment instruments

- Quizzes.
- Major and final exams
- Home works

Allocation of Marks			
Assessment Instruments	Mark		
First examination	20		
Second examination	20		
Final examination	40		
Quizzes	20		
Total	100		

Documentation and academic honesty

- Documentation style (with illustrative examples)
- Protection by copyright
- Avoiding plagiarism.

Course/module academic calendar

No. of Lectures	Chapter No. : main topics	Basic and support material to be covered			
1	Chapter 1	Course introduction; Analytical science,			
-	Analytical chemistry	qualitative and quantitative analysis. The			
		analytical process.			
5	Chapter 5	Review the fundamental concepts of mass, moles,			
	Stoichiometric calculations	and equivalents. Methods of expressing the			
		concentrations: molarity, normality, percent ppt.			
		ppm, ppb. Principle of volumetric analysis and			
		volumetric calculations.			
3	Chapter 6	Review the equilibrium concept and the			
	General concept of general equilibrium	equilibrium constants and describe general			
		approaches for calculations using equilibrium			
		constants. And discuss the activity of ionic			
		species along with calculation of activity			
		coefficients			
E	First examination				
5	Chapter 7 Acid – base equilibria	Acid-base Equilibria in aqueous solution and pX concept (X; H ⁺ , OH ⁻). pH calculations, buffer			
	Acid – base equilibria	solutions and Ophysiological buffer			
4	Chapter 8	Neutralization reactions;			
-	Acid –base titrations	Titration of strong acids and strong bases,			
	Teld buse titutons	titration curves for weak acids, titration curves			
		for weak bases, mixtures of strong and weak			
		acids or bases, factors affecting and theory of			
		indicators			
Second examination					
4	Chapter 10	Steps required in gravimetric analysis.			
	Gravimetric analysis and	Gravimetric factor and gravimetric calculations.			
	precipitation equilibria	Examples of gravimetric analysis, Precipitation			
		equilibria, factors affecting the solubility of the			
		precipitate. Applications involving calculations			
2	Chanton 11	of sparingly soluble salts.			
2	Chapter 11 Precipitation reactions and titrations	Precipitation Titrations, titration curves, detection of the end point, indicators.			
3	Chapter 14	Balance the reduction–oxidation reaction.			
	Redox and potentiometric titrations	Calculating redox titration. Visual detection of			
		the end point. Titrations with reducing and			
		oxidizing agents. Titrations involving iodine:			
		Iodimetry and Iodometry.			
	Final examination				

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

- Analytical Chemistry, an Introduction. Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (1990). Saunders Golden Sunburst Series.
- o Quantitative analysis. Day, R. A., & Underwood, A. L. (1991). Prentice Hall.
- o Quantitative analytical chemistry. Fritz, J. S., & Schenk, G. H. (1987).
- o Analytical chemistry: principles. Kennedy, J. H. (1990). Saunders College Pub.

Journals

NA

Websites

http://www.philadelphia.edu.jo/pharmacy/resources.html