

Philadelphia University Faculty of Science Department of Biotechnology & Genetic Engineering First semester, 2014/2015

Course Syllabus

Course Title: Genetics lab	Course code: 240232
Course Level: 2 nd year	Course pre- or co-requisite: Genetics
Lecture Time: Sec. 1 Thu. 13:10 – 16:00	Credit hours: 1

		Academic Staff Specifics		
Name	Rank	Office Number and Location	Office Hours	E-mail Address
Esraa Al-haj ali	Lecturer	1016/ Department of Biotechnology	11- 12 am Daily	ealhajali@philadelphia.edu.jo

Course module description:

This module is a major requisite for the students of biotechnology and genetic engineering and it is presented in lectures. Its contents focus on basic genetics involved in studying *Drosphila*, monohybrid and dihybrid experiment, chi-square test, DNA extraction and mutation.

Course module objectives:

- 1. Learning how to deal with *Drosphila* in laboratory
- 2. Solving chi-square problems
- 3. Studying the isolation of DNA and measuring its concentration
- 4. Identification of Ames test

Course/ module components:

Lab Sheets will be provided during course

Teaching methods:

Lectures, experiments, Result discussion, Reports, Tutorials, problemsolving, debate, etc.

Learning outcomes:

Knowledge and understanding

The students should be able to know the basic principles of genetics crosses and DNA extraction techniques.

• Cognitive skills (thinking and analysis).

The students will learn the ability to correlate between different experiments and data to identify genetics laws.

• Communication skills (personal and academic).

Raising questions and discussion of results with supervisor, brain storming and group work.

- Practical and subject specific skills (Transferable Skills).
 - Monohybrid and dihybrid crosses
 - Genetics of Drosphila
 - DNA extraction
 - Ames test

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects
- Quizzes.
- Home works
- Final examination: 40 marks

Allocation of Marks		
Assessment Instruments	Mark	
Midterm examination	30 %	
Final examination: 40 marks	40%	
Reports, research projects, Quizzes, Home works, Projects	30 %	
Total	100%	

Documentation and academic honesty

- Documentation style (with illustrative examples)
- Protection by copyright
- Avoiding plagiarism.

Course/module academic calendar

week	Basic and support material to be covered
(1)	Introduction to genetics laboratory
(2)	Meeting the fruit fly
(3)	Observation of Drosophila mutant
(4)	Monohybrid crosses
(5)	Dihydrid cross and chi-square test
(6)	Midterm Exam
(7)	Isolation of DNA
(8)	Concentration of DNA
(9)	Agarose gel electrophoresis
(10)	Bacterial mutation
(11)	Ames test
(12)	Revision
(13)	Final Exam

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.