

Philadelphia University Faculty of Science Department of Biotechnology and Genetic Engineering Second semester, 2009/2010

	Course Syllabus	
Course Title:	Course code:240485	
Applied Molecular Biology/Practical	Course coue .240465	
Course Level: 4 th year	Course prere quisite (s) and/or core quisite (s):	
Source Leven + year	Applied Molecular Biology 240484	
Lecture Time: Thursday	Credit hours:1	
13.10-16.00		

		Academic Staff Specifics		
Nomo	Name Rank	Office Number	Office	E-mail Address
Iname		and Location	Hours	
		906		<u>r khalil@philadelphia.edu.jo</u>
Dr. Raida W. Khalil	Assistant	200	10-12	<u>halaweh@hotmail.com</u>
	Professor		Tuesdaay	Biotechnology students
				<u>stdbio@philadelphia.edu.jo</u>

Course module description:

This module is a major (Mandatory) Departmental course for the Fourth Year. It is taught by lectures, lab and Technology-based. The module focuses on selected basic methods in the purification of biological macromolecules: Protein and RNA. The course deals with horizontal and vertical electrophoresis using denaturing polyacryalmids and agarose gels, centrifugation, detection techniques such as immunobltting and other essential techniques in modern gene technology i.e cDNA synthesis and RT- PCR.

Course module objectives:

At the end of this module, student will be able to:

Demonstrate the Macromolecules extraction (protein and RNA) from mammalian cell lines and tissues

Demonstrate the separation of protein and RNA molecules by applying the vertical denaturing polyacrylamide (SDS PAGE) and horizontal agarose gels electrophoresis.

Integrate the Protein gel electrophoresis (SDS PAGE) with Protein Fingerprinting analysis Demonstrate the detection techniques such as Western Blot and other essential techniques in modern gene technology ie cDNA synthesis and RT- PCR.

Course/ module components

-The students will be provided with lab sheets for each practical session prepared By **Dr. Raida** khalil

Teaching methods:

The 48 hours in total will be mainly practical sessions.

Learning outcomes:

- Cognitive skills (thinking and analysis). Gain Self-management and professional development such as skills necessary for selfmanaged and lifelong learning (working independently, time management, organization).
- Communication skills (personal and academic). Gain interpersonal and Teamwork skills by getting opportunities to work productively with others in the laboratory.
- Practical and subject specific skills (Transferable Skills). Improve Practical skills such as ability to work with mammalian cell line and tissues and the ability to obtain record, collate and analyze information in the laboratory.

Allocation of Marks				
Assessment Instruments	Mark	Date		
Mid term exam	30	10/12/2009		
Final examination: 50 marks	50			
Reports, practical skills, Quizzes and Home works	20			
Total	100			

Assessment instruments

Course/module academic calendar

	Basic and support material to be		
week	practiced		
(1)	Laboratory safety techniques		
	I. Protein analysis		
	Preparation of the nuclear and cytoplasmic		
	extracts(Protein Extraction)		
(2)	I. Protein analysis		
	Determination of protein concentration		
	(Bradford Assay)		
(3)	I. Protein analysis		
	SDS- PAGE (a)		
(4)	I. Protein analysis		
	SDS- PAGE (b)		
(5)	I. Protein analysis		

	Western Blot Analysis(a)	
(6)	I. Protein analysis	
	Western Blot Analysis(b)	
(7)		
Midterm Exam		
(8)	II. RNA analysis	
	Total RNA isolation	
(9)	II. RNA Analysis	
	RNA Quantity and Quality detectionl	
(10)	II. RNA Analysis	
	RT- PCR and Detection of RT- PCR	
	product	
(11)	Real Time PCR	
(12)	Continue: Real Time PCR	
(13)	Final Examination	
Final		
Examination		

Expected workload:

On average students need to spend 3 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

1-Title: Cell and molecular biology: concepts and experiments,2001 Author(s)/Editor(s):Gerald ,etal Publisher: New York: John Wiley and Sons, Inc., ISBN: 0-471-38913-7

2-Title:Human molecular biology laboratory manual, 2002 Author(s)/Editor(s): Rob reed, et al Publisher: Oxford: Blackwell ISBN: 0-632-04676-7

<u>Websites</u> http://www.protocol-online.org/

http://rebase.neb.com/rebase/rebase.html http://www.biozone.co.uk/biolinks/BIOTECHNOLOGY.html#Biotechnology_Techniques

http://userpages.umbc.edu/~jwolf/method1.html