

Philadelphia University Faculty of Science Department of Biotechnology & Genetic Engineering Spring semester, 2008/2009

Course Syllabus

Course Title: Special Topic A	Course code: 240495	
Course Level: 4	Course prerequisite (s) and/or corequisite (s):	
Lecture Time:	Credit hours: 1 Hour	
- Thurs.: 10:10-11:00 a.m		

Academic Staff Specifics

Name	Rank	Office No. & Location	Office Hours
Salem Al-Maloul	Associate Professor	908	

Course module description:

• This course is a required course designed for the forth level students at the department of Biotechnology and Genetic Engineering. The course will provide the students with the basic biological and technical principles behind the most advanced molecular technique, Polymerase Chain Reaction (PCR).

Course module objectives:

- To provide students with basic knowledge of the concepts and themes of PCR.
- To present the students with an overview of the biological tools used in PCR.
- To outline the process of science in studying biological problems using PCR.

Course/ module components:

• Books (title, author (s), publisher, year of publication)

Title: PCR

Author(s)/Editor(s): C.R. Newton & A. Graham

Publisher: Bios Scientific Publishers

Year: Edition:

- Support material (s) (vcs, acs, etc).
- Study guide (s) (if applicable)
- Homework and laboratory guide (s) if (applicable).

Teaching methods:

- Lectures, discussion groups, tutorials, problem solving, debates, etc.
- The use of colored transparent slides, power point presentation, illustration with models, educational animations and movies.
- The use of the free website provided by the publisher over the internet.

Learning outcomes:

- Knowledge and understanding
 - At the end of this module, students will be able to gain knowledge about:
- The various fundamental biological concepts and tools used in PCR.
- The various steps of PCR.
- The importance of PCR in the various fields of biotechnology.
- Cognitive skills (thinking and analysis).
 - At the end of this module, students will be able to develop their intellectual skills through understanding the concepts of PCR and formulating questions and thinking of the appropriate answers to their questions.
- Communication skills (personal and academic).
 - At the end of this module, students will be able to develop personal communication skills through participating in open-discussions with their colleagues and instructors.
- Practical and subject specific skills (Transferable Skills).
 - At the end of this module, students will be able to:
- Improve their ability to search for information using various communication settings.
- Improve their ability to analyze data based on their understanding to the basic biological concepts of PCR.
- Benefit from all supplementary material provided with the textbook.

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects
- Ouizzes.
- Home works
- Final examination

Allocation of Marks		
Assessment Instruments	Mark	
First examination	25	
Second examination	25	
Final examination: 50 marks	50	
Reports, research projects, Quizzes, Home works, Projects	-	
Total	100	

Documentation and academic honesty

- Documentation style (with illustrative examples)
- Protection by copyright
- Avoiding plagiarism.

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Course/module academic calendar

	Basic and support material to be covered	
week		
(1)	- Orientation & Introduction	
Part I: Basic Principles and Methods		
(2)	- What is PCR?	
(3)	- Instrumentation, Reagents and Consumables	
(4)	- Amplifying the Correct Product	
Part II: Techniques and Applications		
(5)	- Cloning and Modification of PCR Products	
(6)	- Isolation and Construction of DNA Clones	
First Examination		
(7)	- PCR Mutagenesis	
(8)	- Sequencing PCR Products	
(9)	- New Sequence Determination and Genome Mapping	
(10)	- Fingerprinting	
(11)	- Characterizing Unknown Mutations	
(12)	- Analysis of Known Mutations	
Second Examination		
(13)	- Detecting Pathogens	
(14)	- Quantitative PCR	
(15)	- Revision	
(16)	- Final Examination	

Module references

* Books

Title:

Authors:

Publisher:

Year:

Edition:

* <u>Journals:</u> -

* Websites: -