

Philadelphia University Faculty of Science Department of Basic Sciences and Mathematics first semester, 2014/2015

	<u>Course Syllabus</u>	
Course Title: Linear Algebra 1	Course code:250241	
Course Level: 1	Course prerequisite (s) and/or corequisite (s): None	
Lecture Time: Sun .Tue and Thu 09:10-10:00	Credit hours:3 credit hours	

		Academic Staff Specifics		
Name	Rank	Office Number and Location	Office Hours	E-mail Address
Amin Witno	Assist.Prof.	2-820	Sun Tue Thu 10:00-11:00 Mon Wed 11:00- 12:00	awitno@gmail.com

Course module description:

It includes the study of linear equations, matrix operations, vector space and subspace, eigenvalues and eigenvectors, rotation of coordinate axes-, diagonalization, general linear transformations, and inverse transformations.

Course module objectives:

To enable the students to carry matrix operations.

To understand eigenvectors and eigenvalues and systems of linear equations.

To enable students to solve linear equations using matrices.

To carry on Transformations and inverse transformations.

Course/ module components

• Books (title , author (s), publisher, year of publication)

Text Book

Title: Elementary Linear Algebra 9th Edition. Author Howard Anton Publisher: Wiley 2003

- Support material (s) (vcs, acs, etc) .
- Study guide (s) (if applicable)
- Homework and laboratory guide (s) if (applicable) .

Teaching methods:

Lectures, discussion groups, tutorials, problem solving, debates, etc.

Learning outcomes:

- Knowledge and understanding Understanding of the concepts of vectors and linear algebra .
- Cognitive skills (thinking and analysis). Applying the principles of systems of linear equations and matrices in some real world

problems

- Communication skills (personal and academic). Scientific thinking and applications develops communication skills
- Practical and subject specific skills (Transferable Skills). Applying the concepts of linear algebra in simple experiments

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects.
- Quizzes.
- Home works.
- Final examination: 50 marks

Allocation of Marks				
Assessment Instruments	Mark			
First examination	20%			
Second examination	20%			
Final examination: 50 marks	40%			
Reports, research projects, Quizzes, Home works, Projects	20%			
Total	100			

Documentation and academic honesty

- Documentation style (with illustrative examples)
- Protection by copyright
 Avoiding plagiarism.

Course/module academic calendar

week	Basic and support material to be covered	Homework/reports and Their due dates
(1)	CH01:System Of Linear Equations And Matrices	Homework sheet 1
	Introduction to systems of linear equations	
	Matrices and matrix operations	
	• Elementary matrices and a mehod for finding A ⁻¹	
(2)	Diagonal, Triangular, and Symmetric Matrices	Homework sheet1 due to
	Gaussian elimination	
	• Further results on systems of equations and	
	invertibility	
(3)	Ch02: Determinants	Homework sheet2
	The Determinant Function	
	Evaluating Determinants by Row Reduction	
(4)	Properties of the Determinant Function	Homework sheet2 due to
	Cofactor Expansion: Cramer's Rule	
(5)	CH05:General Vector Spaces	Homework sheet3 due to
	Real vector spaces	
	• Sub spaces	
(6)First	Linear independence	Homework sheet4 due to
examination	Basis and dimension	
(7)	Row Space, Column Space, and Null Space	Homework sheet5 due to
	Rank and Nullity	
(8)	Ch06:Inner Product Space	Homework sheet6 due to
	Inner Products	
	Angle and Orthogonality in Inner Product Spaces	
(9)	Orthonormal Bases; Gram Schmidt process	Homework sheet7
(10)	Change of basis	Homework sheet7 dueto
	Rotation of coordinate axes	
(11)Second	Ch07: Eigenvalues and Eigenvectors	Homework sheet8
examination	Eigenvalues and eigenvectors	
(12)	Diagonalization	Homework sheet8 due to
	• Powers of a matrix	
(13)	Ch08: Linear Transformations	Homework sheet9
	General Linear Transformations	
(14)	Kernel and Range	Homework sheet9 Due to
	Inverse Linear Transformations	
(15)Specimen	Matrices of Linear Transformations	Homework sheet10 dueto
examination		
(Optional)		
(16)	Review and Exercises	
Final		
Examination		

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references:

- Linear Algebra and its applications by Howard Anton _Addison Wesley 2002.
- Linear Algebra by L.W.Jhonson&R.D.Riess&J.t.arnold- Addisson Wesely 2007.
- Linear Algebra by Eric Carlen_ Freeman 2007
- Linear Algebra and its applications by Gilbert Srang _Belmont,CA 2006
- Linear Algebra and its applications by David C.Lay_ pearson/addisson wesly2006.

Journals:

- www.math.technion.ac.il
- http://archives.math.utk.edu/topics/linear algebra.
- www.elsevier.com/wps/find/journaldescription.cws-home
- www.ilasic.math.uregina.ca/iic/journal

Websites:

- www.numbertheory.org/book
- http://ocw.mit.edu/ocwweb/mathematics......(video lectures).
- http://en.wikipedia.org/wiki/Linear-algebra.....(several links and text books)