Sampled Data Systems and the Z-Transform

Digital Control

Dr. Ahmad Al-Mahasneh

In the previous lecture

- \triangleright Mechanical systems modelling
- \triangleright Electrical systems modelling
- \triangleright Electromechanical systems modelling

Outline

- **❖ Sampling**
- Quantization
- Z-transform

Sampling

- 1. Sampled data system operates on discrete-time rather than continuous-time signals.
- 2. A **digital computer** is used as the controller in such a system.
- 3. A **D/A** converter is usually connected to the output of the computer to drive the plant.
- 4. We will assume that all the signals enter and leave the computer at the same fixed times, known as the **sampling times**.
- 5. The digital computer performs the controller or the compensation function within the system.
- 6. The **A/D** converter converts the error signal, which is a continuous signal, into digital form so that it can be processed by the computer.
- 7. At the computer output the D/A converter converts the digital output of the computer into a form which can be used to drive the plant.

Sampling

THE SAMPLING PROCESS

A sampler is basically a switch that closes every *T* seconds.

When a continuous signal *r* (*t*) is sampled at regular intervals *T* , the resulting discrete-time signal

THE SAMPLING PROCESS

The ideal sampling process can be considered as the multiplication of a pulse train with a continuous signal, i.e.

 $r^*(t) = P(t)r(t),$

where $P(t)$ is the delta pulse train as shown in Figure 6.6, expressed as

$$
P(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT);
$$

thus,

$$
r^*(t) = r(t) \sum_{n=-\infty}^{\infty} \delta(t - nT)
$$

THE SAMPLING PROCESS

or

$$
r^*(t) = \sum_{n = -\infty}^{\infty} r(n) \delta(t - n). \tag{6.4}
$$

Now

$$
r(t) = 0, \quad \text{for } t < 0,\tag{6.5}
$$

and

$$
r^*(t) = \sum_{n=0}^{\infty} r(nT)\delta(t - nT).
$$
 (6.6)

Taking the Laplace transform of (6.6) gives

$$
R^*(s) = \sum_{n=0}^{\infty} r(nT)e^{-snT}.
$$
 (6.7)

Equation (6.7) represents the Laplace transform of a sampled continuous signal $r(t)$.

Zero-order hold (ZOH)

A D/A converter converts the sampled signal $r^*(t)$ into a continuous signal $y(t)$. The D/A can be approximated by a zero-order hold (ZOH) circuit as shown in Figure 6.7. This circuit remembers the last information until a new sample is obtained, i.e. the zero-order hold takes the value $r(nT)$ and holds it constant for $nT \le t < (n + 1)T$, and the value $r(nT)$ is used during the sampling period.

The impulse response of a zero-order hold is shown in Figure 6.8. The transfer function of a zero-order hold is given by

$$
G(t) = H(t) - H(t - T),
$$
\n(6.8)

Figure 6.7 A sampler and zero-order hold

Zero-order hold (ZOH)

Figure 6.8 Impulse response of a zero-order hold

where $H(t)$ is the step function, and taking the Laplace transform yields

$$
G(s) = \frac{1}{s} - \frac{e^{-Ts}}{s} = \frac{1 - e^{-Ts}}{s}.
$$
\n(6.9)

Zero-order hold (ZOH)

- A sampler and zero-order hold can accurately follow the input signal if the sampling time *T* is small compared to the transient changes in the signal.
- The response of a sampler and a zero-order hold to a ramp input is shown in Figure 6.9 for two different values of sampling period.

Example

Figure 6.10 shows an ideal sampler followed by a zero-order hold.

Assuming the input signal $r(t)$ is as shown in the figure, show the waveforms after the sampler and also after the zero-order hold.

Ideal sampler and zero-order hold for Example 6.1 Figure 6.10

Figure 6.11 Solution for Example 6.1

Quantization

- Quantization is the process of representing an analogue or continuous signal in discrete-states.
- Any A/D conversion involves **quantization error** which is due to the fact that analogue numbers should be rounded off to the nearest digital level.
- The analogue quantity is approximated by a finite digital number (digital word).
- Quantization Level depend on the Full-scale range (FSR) and the number of bits in the quantizer (n).
- $\textcolor{red}{\bullet}$ Quantization level (Q)= FSR /(2ⁿ)
- Quantization error ranges between $[-Q/2 -Q/2] = r(t)-y(t)$

Example Quantization

Find the Quantization error of the given signal at $t = 0, 1, 2, 3, 4$ and 5.

The *z*-transformation is used in sampled data systems just as the Laplace transformation is used in continuous-time systems.

The *z*-transform is defined so that: $Z = e^{sT}$

the z-transform of the function $r(t)$ is $Z[r(t)] = R(z)$ which, from (6.7), is given by

$$
R(z) = \sum_{n=0}^{\infty} r(nT)z^{-n}.
$$

Notice that the z -transform consists of an infinite series in the complex variable z , and

$$
R(z) = r(0) + r(T)z^{-1} + r(2T)z^{-2} + r(3T)z^{-3} + \dots,
$$

i.e. the $r(nT)$ are the coefficients of this power series at different sampling instants.

- The response of a sampled data system can be determined easily by finding the z-transform of the output and then calculating the inverse ztransform.
- Just like the Laplace transform techniques used in continuous-time systems.

6.2.1 Unit Step Function

Consider a unit step function as shown in Figure 6.12, defined as

$$
r(nT) = \begin{cases} 0, & n < 0, \\ 1, & n \ge 0. \end{cases}
$$

From (6.11) ,

$$
R(z) = \sum_{n=0}^{\infty} r(nT)z^{-n} = \sum_{n=0}^{\infty} z^{-n} = 1 + z^{-1} + z^{-2} + z^{-3} + z^{-4} + \dots
$$

$$
R(z) = \frac{z}{z-1}, \quad \text{for } |z| > 1.
$$

Figure 6.12 Unit step function

6.2.2 Unit Ramp Function

Consider a unit ramp function as shown in Figure 6.13, defined by

$$
r(nT) = \begin{cases} 0, & n < 0, \\ nT, & n \ge 0. \end{cases}
$$

From (6.11) ,

$$
R(z) = \sum_{n=0}^{\infty} r(nT)z^{-n} = \sum_{n=0}^{\infty} nTz^{-n} = Tz^{-1} + 2Tz^{-2} + 3Tz^{-3} + 4Tz^{-4} + \dots
$$

Figure 6.13 Unit ramp function

$$
R(z) = \frac{Tz}{(z-1)^2}, \quad \text{for } |z| > 1.
$$

6.2.3 Exponential Function

Consider the exponential function shown in Figure 6.14, defined as

$$
r(nT) = \begin{cases} 0, & n < 0, \\ e^{-anT}, & n \ge 0. \end{cases}
$$

From (6.11) ,

$$
R(z) = \sum_{n=0}^{\infty} r(nT)z^{-n} = \sum_{n=0}^{\infty} e^{-anT}z^{-n} = 1 + e^{-aT}z^{-1} + e^{-2aT}z^{-2} + e^{-3aT}z^{-3} + \dots
$$

Figure 6.14 Exponential function

$$
R(z) = \frac{1}{1 - e^{-aT}z^{-1}} = \frac{z}{z - e^{-aT}}, \quad \text{for } |z| < e^{-aT}.\tag{6.12}
$$

6.2.4 General Exponential Function

Consider the general exponential function

$$
r(n) = \begin{cases} 0, & n < 0, \\ p^n, & n \ge 0. \end{cases}
$$

From (6.11) ,

$$
R(z) = \sum_{n=0}^{\infty} r(nT)z^{-n} = \sum_{n=0}^{\infty} p^{n}z^{-n} = 1 + pz^{-1} + p^{2}z^{-2} + p^{3}z^{-3} + \dots
$$

or

$$
R(z) = \frac{z}{z - p}, \quad \text{for } |z| < |p|.
$$

Similarly, we can show that

$$
R(p^{-k}) = \frac{z}{z - p^{-1}}.
$$

6.2.5 Sine Function

Consider the sine function, defined as

$$
r(nT) = \begin{cases} 0, & n < 0, \\ \sin n\omega T, & n \ge 0. \end{cases}
$$

Recall that

$$
\sin x = \frac{e^{jx} - e^{-jx}}{2j},
$$

so that

$$
r(nT) = \frac{e^{jn\omega T} - e^{-jn\omega T}}{2j} = \frac{e^{jn\omega T}}{2j} - \frac{e^{-jn\omega T}}{2j}.
$$
 (6.13)

But we already know from (6.12) that the z-transform of an exponential function is

1

$$
R(e^{-anT}) = R(z) = \frac{z}{z - e^{-aT}}.
$$

Therefore, substituting in (6.13) gives

$$
R(z) = \frac{1}{2j} \left(\frac{z}{z - e^{j\omega T}} - \frac{z}{z - e^{-j\omega T}} \right) = \frac{1}{2j} \left(\frac{z(e^{j\omega T} - e^{-j\omega T})}{z^2 - z(e^{j\omega T} + e^{-j\omega T}) + 1} \right)
$$

$$
R(z) = \frac{z \sin \omega T}{z^2 - 2z \cos \omega T + 1}.
$$

6.2.6 Cosine Function

Consider the cosine function, defined as

$$
r(nT) = \begin{cases} 0, & n < 0, \\ \cos n\omega T, & n \ge 0. \end{cases}
$$

Recall that

$$
\cos x = \frac{e^{jx} + e^{-jx}}{2},
$$

so that

$$
r(nT) = \frac{e^{jn\omega T} + e^{-jn\omega T}}{2} = \frac{e^{jn\omega T}}{2} + \frac{e^{-jn\omega T}}{2}.
$$
 (6.14)

But we already know from (6.12) that the z-transform of an exponential function is

$$
R(e^{-anT}) = R(z) = \frac{z}{z - e^{-aT}}.
$$

Therefore, substituting in (6.14) gives

$$
R(z) = \frac{1}{2} \left(\frac{z}{z - e^{j\omega T}} + \frac{z}{z - e^{-j\omega T}} \right)
$$

$$
R(z) = \frac{z(z - \cos \omega T)}{z^2 - 2z \cos \omega T + 1}.
$$

6.2.7 Discrete Impulse Function

Consider the discrete impulse function defined as

$$
\delta(n) = \begin{cases} 1, & n = 0, \\ 0, & n \neq 0. \end{cases}
$$

From (6.11) ,

$$
R(z) = \sum_{n=0}^{\infty} r(nT)z^{-n} = \sum_{n=0}^{\infty} z^{-n} = 1.
$$

6.2.8 Delayed Discrete Impulse Function

The delayed discrete impulse function is defined as

$$
\delta(n-k) = \begin{cases} 1, & n = k > 0, \\ 0, & n \neq k. \end{cases}
$$

From (6.11) ,

$$
R(z) = \sum_{n=0}^{\infty} r(nT)z^{-n} = \sum_{n=0}^{\infty} z^{-n} = z^{-n}.
$$

Tables of Z-Transforms

The z-Transform of a Function Expressed as a Laplace 6.2.10 **Transform**

It is important to realize that although we denote the z-transform equivalent of $G(s)$ by $G(z)$, $G(z)$ is not obtained by simply substituting z for s in $G(s)$. We can use one of the following methods to find the z-transform of a function expressed in Laplace transform format:

- Given $G(s)$, calculate the time response $g(t)$ by finding the inverse Laplace transform of $G(s)$. Then find the z-transform either from the first principles, or by looking at the z-transform tables.
- Given $G(s)$, find the z-tranform $G(z)$ by looking at the tables which give the Laplace transforms and their equivalent z -transforms (e.g. Table 6.1).
- Given the Laplace transform $G(s)$, express it in the form $G(s) = N(s)/D(s)$ and then use the following formula to find the z-transform $G(z)$:

$$
G(z) = \sum_{n=1}^{p} \frac{N(x_n)}{D'(x_n)} \frac{1}{1 - e^{x_n T} z^{-1}},
$$
\n(6.15)

where $D' = \partial D/\partial s$ and the x_n , $n = 1, 2, ..., p$, are the roots of the equation $D(s) = 0$.

Example 6.2

Let

$$
G(s) = \frac{1}{s^2 + 5s + 6}.
$$

Determine $G(z)$ by the methods described above.

Solution

Method 1: By finding the inverse Laplace transform. We can express $G(s)$ as a sum of its partial fractions:

$$
G(s) = \frac{1}{(s+3)(s+2)} = \frac{1}{s+2} - \frac{1}{s+3}.
$$
\n(6.16)

The inverse Laplace transform of (6.16) is

$$
g(t) = L^{-1}[G(s)] = e^{-2t} - e^{-3t}.
$$
\n(6.17)

From the definition of the z-transforms we can write (6.17) as

$$
G(z) = \sum_{n=0}^{\infty} (e^{-2nT} - e^{-3nT})z^{-n}
$$

= $(1 + e^{-2T}z^{-1} + e^{-4T}z^{-2} + ...)$ - $(1 + e^{-3T}z^{-1} + e^{-6T}z^{-2} + ...)$
= $\frac{z}{z - e^{-2T}} - \frac{z}{z - e^{-3T}}$

Method 2: By using the z-transform transform tables for the partial product. From Table 6.1, the z-transform of $1/(s + a)$ is $z/(z - e^{-aT})$. Therefore the z-transform of (6.16) is

$$
G(z) = \frac{z}{z - e^{-2T}} - \frac{z}{z - e^{-3T}}
$$

$$
G(z) = \frac{z(e^{-2T} - e^{-3T})}{(z - e^{-2T})(z - e^{-3T})}.
$$

Method 3: By using the z-transform tables for $G(s)$ *.* From Table 6.1, the z-transform of

$$
G(s) = \frac{b - a}{(s + a)(s + b)}
$$
(6.18)

$$
G(z) = \frac{z(e^{-aT} - e^{-bT})}{(z - e^{-aT})(z - e^{-bT})}.
$$
\n(6.19)

Comparing (6.18) with (6.16) we have, $a = 2, b = 3$. Thus, in (6.19) we get

$$
G(z) = \frac{z(e^{-2T} - e^{-3T})}{(z - e^{-2T})(z - e^{-3T})}.
$$

Method 4: By using equation (6.15) *.* Comparing our expression

$$
G(s) = \frac{1}{s^2 + 5s + 6}
$$

with (6.15), we have $N(s) = 1$, $D(s) = s^2 + 5s + 6$ and $D'(s) = 2s + 5$, and the roots of $D(s) = 0$ are $x_1 = -2$ and $x_2 = -3$. Using (6.15),

$$
G(z) = \sum_{n=1}^{2} \frac{N(x_n)}{D'(x_n)} \frac{1}{1 - e^{x_n T} z^{-1}}
$$

or, when $x_1 = -2$,

$$
G_1(z) = \frac{1}{1} \frac{1}{1 - e^{-2T} z^{-1}}
$$

and when $x_1 = -3$,

$$
G_2(z) = \frac{1}{-1} \frac{1}{1 - e^{-3T} z^{-1}}.
$$

Thus,

$$
G(z) = \frac{1}{1 - e^{-2T}z^{-1}} - \frac{1}{1 - e^{-3T}z^{-1}} = \frac{z}{z - e^{-2T}} - \frac{z}{z - e^{-3T}}
$$

f(kT)	F(z)
$\delta(t)$	1
1	$\frac{z}{z-1}$
kT	Tz $\frac{1}{(z-1)^2}$
e^{-akT}	Z $\overline{z - e^{-aT}}$
kTe^{-akT}	Tze^{-aT} $\overline{(z-e^{-aT})^2}$
a^k	\overline{z} $z - a$
$1-e^{-akT}$	$z(1-e^{-aT})$ $(z-1)(z-e^{-aT})$
$\sin akT$	z sin aT $z^2-2z\cos aT+1$
$\cos akT$	$z(z - \cos aT)$ $z^2 - 2z \cos aT + 1$

Table 6.1 Some commonly used z -transforms

Most of the properties of the z-transform are analogs of those of the Laplace transforms. Important z-transform properties are discussed in this section.

1. Linearity property

Suppose that the z-transform of $f(nT)$ is $F(z)$ and the z-transform of $g(nT)$ is $G(z)$. Then

$$
Z[f(nT) \pm g(nT)] = Z[f(nT)] \pm Z[g(nT)] = F(z) \pm G(z)
$$
\n(6.20)

and for any scalar a

$$
Z[af(nT)] = aZ[f(nT)] = aF(z)
$$
\n(6.21)

2. Left-shifting property

Suppose that the z-transform of $f(nT)$ is $F(z)$ and let $y(nT) = f(nT + mT)$. Then

$$
Y(z) = zm F(z) - \sum_{i=0}^{m-1} f(iT) z^{m-i}.
$$
 (6.22)

If the initial conditions are all zero, i.e. $f(iT) = 0$, $i = 0, 1, 2, ..., m - 1$, then,

$$
Z[f(nT + mT)] = zm F(z).
$$
 (6.23)

3. Right-shifting property

Suppose that the z-transform of $f(nT)$ is $F(z)$ and let $y(nT) = f(nT - mT)$. Then

$$
Y(z) = z^{-m} F(z) + \sum_{i=0}^{m-1} f(iT - mT)z^{-i}.
$$
 (6.24)

If $f(nT) = 0$ for $k < 0$, then the theorem simplifies to

$$
Z[f(nT - mT)] = z^{-m} F(z).
$$
 (6.25)

4. Attenuation property Suppose that the z-transform of $f(nT)$ is $F(z)$. Then,

$$
Z[e^{-anT} f(nT)] = F[ze^{aT}].
$$
 (6.26)

This result states that if a function is multiplied by the exponential e^{-anT} then in the z-transform of this function z is replaced by ze^{aT} .

5. Initial value theorem

Suppose that the z-transform of $f(nT)$ is $F(z)$. Then the initial value of the time response is given by

$$
\lim_{n \to 0} f(nT) = \lim_{z \to \infty} F(z). \tag{6.27}
$$

6. Final value theorem

Suppose that the z-transform of $f(nT)$ is $F(z)$. Then the final value of the time response is given by

$$
\lim_{n \to \infty} f(nT) = \lim_{z \to 1} (1 - z^{-1}) F(z).
$$
\n(6.28)

Note that this theorem is valid if the poles of $(1 - z^{-1})F(z)$ are inside the unit circle or at $z=1$.

Properties of Z-Transforms: Examples

Example 6.3

The z-transform of a unit ramp function $r(nT)$ is

$$
R(z) = \frac{Tz}{(z-1)^2}.
$$

Find the z-transform of the function $5r(nT)$.

Solution

Using the linearity property of z -transforms,

$$
Z[5r(nT)] = 5R(z) = \frac{5Tz}{(z-1)^2}.
$$

Properties of Z-Transforms: Examples

Example 6.4

The z-transform of trigonometric function $r(nT) = \sin n\omega T$ is

$$
R(z) = \frac{z \sin wT}{z^2 - 2z \cos wT + 1}.
$$

find the z-transform of the function $y(nT) = e^{-2T} \sin nW T$.

Solution

Using property 4 of the z -transforms,

$$
Z[y(nT)] = Z[e^{-2T}r(nT)] = R[ze^{2T}].
$$

Thus,

$$
Z[y(nT)] = \frac{ze^{2T}\sin wT}{(ze^{2T})^2 - 2ze^{2T}\cos wT + 1} = \frac{ze^{2T}\sin wT}{z^2e^{4T} - 2ze^{2T}\cos wT + 1}
$$

or, multiplying numerator and denominator by e^{-4T} ,

$$
Z[y(nT)] = \frac{ze^{-2T}\sin wT}{z^2 - 2ze^{-2T} + e^{-4T}}.
$$

Properties of Z-Transforms: Examples

Example 6.5

Given the function

$$
G(z) = \frac{0.792z}{(z - 1)(z^2 - 0.416z + 0.208)},
$$

find the final value of $g(nT)$.

Solution

Using the final value theorem,

$$
\lim_{n \to \infty} g(nT) = \lim_{z \to 1} (1 - z^{-1}) \frac{0.792z}{(z - 1)(z^2 - 0.416z + 0.208)}
$$

$$
= \lim_{z \to 1} \frac{0.792}{z^2 - 0.416z + 0.208}
$$

$$
= \frac{0.792}{1 - 0.416 + 0.208} = 1.
$$

End

Thanks