Sampled Data Systems and the Z-Transform

Digital Control

Dr. Ahmad Al-Mahasneh

In the previous lecture

- Mechanical systems modelling
- Electrical systems modelling
- Electromechanical systems modelling

Outline

- ✤ Sampling
- ✤ Quantization
- ✤ Z-transform

Sampling

- 1. Sampled data system operates on discrete-time rather than continuous-time signals.
- 2. A digital computer is used as the controller in such a system.
- 3. A D/A converter is usually connected to the output of the computer to drive the plant.
- 4. We will assume that all the signals enter and leave the computer at the same fixed times, known as the **sampling times**.
- 5. The digital computer performs the controller or the compensation function within the system.
- 6. The **A/D** converter converts the error signal, which is a continuous signal, into digital form so that it can be processed by the computer.
- 7. At the computer output the D/A converter converts the digital output of the computer into a form which can be used to drive the plant.

Sampling

THE SAMPLING PROCESS

A sampler is basically a switch that closes every T seconds.

When a continuous signal r(t) is sampled at regular intervals T, the resulting discrete-time signal

THE SAMPLING PROCESS

The ideal sampling process can be considered as the multiplication of a pulse train with a continuous signal, i.e.

 $r^*(t) = P(t)r(t),$

where P(t) is the delta pulse train as shown in Figure 6.6, expressed as

$$P(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT);$$

thus,

$$r^{*}(t) = r(t) \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

THE SAMPLING PROCESS

or

$$r^*(t) = \sum_{n=-\infty}^{\infty} r(nT)\delta(t - nT).$$
(6.4)

Now

$$r(t) = 0, \quad \text{for } t < 0,$$
 (6.5)

and

$$r^{*}(t) = \sum_{n=0}^{\infty} r(nT)\delta(t - nT).$$
(6.6)

Taking the Laplace transform of (6.6) gives

$$R^*(s) = \sum_{n=0}^{\infty} r(nT)e^{-snT}.$$
(6.7)

Equation (6.7) represents the Laplace transform of a sampled continuous signal r(t).

Zero-order hold (ZOH)

A D/A converter converts the sampled signal $r^*(t)$ into a continuous signal y(t). The D/A can be approximated by a zero-order hold (ZOH) circuit as shown in Figure 6.7. This circuit remembers the last information until a new sample is obtained, i.e. the zero-order hold takes the value r(nT) and holds it constant for $nT \le t < (n + 1)T$, and the value r(nT) is used during the sampling period.

The impulse response of a zero-order hold is shown in Figure 6.8. The transfer function of a zero-order hold is given by

$$G(t) = H(t) - H(t - T),$$
(6.8)

Figure 6.7 A sampler and zero-order hold

Zero-order hold (ZOH)

Figure 6.8 Impulse response of a zero-order hold

where H(t) is the step function, and taking the Laplace transform yields

$$G(s) = \frac{1}{s} - \frac{e^{-Ts}}{s} = \frac{1 - e^{-Ts}}{s}.$$
(6.9)

Zero-order hold (ZOH)

- A sampler and zero-order hold can accurately follow the input signal if the sampling time *T* is small compared to the transient changes in the signal.
- The response of a sampler and a zero-order hold to a ramp input is shown in Figure 6.9 for two different values of sampling period.

Example

Figure 6.10 shows an ideal sampler followed by a zero-order hold.

Assuming the input signal r(t) is as shown in the figure, show the waveforms after the sampler and also after the zero-order hold.

Figure 6.10 Ideal sampler and zero-order hold for Example 6.1

Figure 6.11 Solution for Example 6.1

Quantization

- Quantization is the process of representing an analogue or continuous signal in discrete-states.
- Any A/D conversion involves <u>quantization error</u> which is due to the fact that analogue numbers should be rounded off to the nearest digital level.
- The analogue quantity is approximated by a finite digital number (digital word).
- •Quantization Level depend on the Full-scale range (FSR) and the number of bits in the quantizer (n).
- •Quantization level (Q)= FSR $/(2^n)$
- •Quantization error ranges between [-Q/2 Q/2] = r(t) y(t)

Example Quantization

Find the Quantization error of the given signal at t = 0, 1, 2, 3, 4 and 5.

t	r(t)	y(t)	e(t)
0	0	0.3	-0.3
1	1	0.9	0.1
2	2	2.1	-0.1
3	3	2.8	0.2
4	4	3.9	0.1
5	5	5.1	-0.1

The *z*-transformation is used in sampled data systems just as the Laplace transformation is used in continuous-time systems.

The *z*-transform is defined so that: $Z = e^{sT}$

the z-transform of the function r(t) is Z[r(t)] = R(z) which, from (6.7), is given by

$$R(z) = \sum_{n=0}^{\infty} r(nT) z^{-n}.$$

Notice that the *z*-transform consists of an infinite series in the complex variable *z*, and

$$R(z) = r(0) + r(T)z^{-1} + r(2T)z^{-2} + r(3T)z^{-3} + \dots,$$

i.e. the r(nT) are the coefficients of this power series at different sampling instants.

- The response of a sampled data system can be determined easily by finding the z-transform of the output and then calculating the inverse z-transform.
- Just like the Laplace transform techniques used in continuous-time systems.

6.2.1 Unit Step Function

Consider a unit step function as shown in Figure 6.12, defined as

$$r(nT) = \begin{cases} 0, & n < 0, \\ 1, & n \ge 0. \end{cases}$$

From (6.11),

$$R(z) = \sum_{n=0}^{\infty} r(nT)z^{-n} = \sum_{n=0}^{\infty} z^{-n} = 1 + z^{-1} + z^{-2} + z^{-3} + z^{-4} + \dots$$

$$R(z) = \frac{z}{z-1}$$
, for $|z| > 1$.

Figure 6.12 Unit step function

6.2.2 Unit Ramp Function

Consider a unit ramp function as shown in Figure 6.13, defined by

$$r(nT) = \begin{cases} 0, & n < 0, \\ nT, & n \ge 0. \end{cases}$$

From (6.11),

$$R(z) = \sum_{n=0}^{\infty} r(nT)z^{-n} = \sum_{n=0}^{\infty} nTz^{-n} = Tz^{-1} + 2Tz^{-2} + 3Tz^{-3} + 4Tz^{-4} + \dots$$

Figure 6.13 Unit ramp function

$$R(z) = \frac{Tz}{(z-1)^2},$$
 for $|z| > 1.$

6.2.3 Exponential Function

Consider the exponential function shown in Figure 6.14, defined as

$$r(nT) = \begin{cases} 0, & n < 0, \\ e^{-anT}, & n \ge 0. \end{cases}$$

From (6.11),

$$R(z) = \sum_{n=0}^{\infty} r(nT)z^{-n} = \sum_{n=0}^{\infty} e^{-anT}z^{-n} = 1 + e^{-aT}z^{-1} + e^{-2aT}z^{-2} + e^{-3aT}z^{-3} + \dots$$

$$R(z) = \frac{1}{1 - e^{-aT} z^{-1}} = \frac{z}{z - e^{-aT}}, \quad \text{for } |z| < e^{-aT}.$$
(6.12)

Figure 6.14 Exponential function

6.2.4 General Exponential Function

Consider the general exponential function

$$r(n) = \begin{cases} 0, & n < 0, \\ p^n, & n \ge 0. \end{cases}$$

From (6.11),

$$R(z) = \sum_{n=0}^{\infty} r(nT)z^{-n} = \sum_{n=0}^{\infty} p^n z^{-n} = 1 + pz^{-1} + p^2 z^{-2} + p^3 z^{-3} + \dots$$

or

$$R(z) = \frac{z}{z - p}, \quad \text{for } |z| < |p|.$$

Similarly, we can show that

$$R(p^{-k}) = \frac{z}{z - p^{-1}}.$$

6.2.5 Sine Function

Consider the sine function, defined as

$$r(nT) = \begin{cases} 0, & n < 0, \\ \sin n\omega T. & n \ge 0. \end{cases}$$

Recall that

$$\sin x = \frac{e^{jx} - e^{-jx}}{2j},$$

so that

$$r(nT) = \frac{e^{jn\omega T} - e^{-jn\omega T}}{2j} = \frac{e^{jn\omega T}}{2j} - \frac{e^{-jn\omega T}}{2j}.$$
 (6.13)

But we already know from (6.12) that the *z*-transform of an exponential function is

$$R(e^{-anT}) = R(z) = \frac{z}{z - e^{-aT}}.$$

Therefore, substituting in (6.13) gives

$$R(z) = \frac{1}{2j} \left(\frac{z}{z - e^{j\omega T}} - \frac{z}{z - e^{-j\omega T}} \right) = \frac{1}{2j} \left(\frac{z(e^{j\omega T} - e^{-j\omega T})}{z^2 - z(e^{j\omega T} + e^{-j\omega T}) + 1} \right)$$

$$R(z) = \frac{z \sin \omega T}{z^2 - 2z \cos \omega T + 1}.$$

6.2.6 Cosine Function

Consider the cosine function, defined as

$$r(nT) = \begin{cases} 0, & n < 0, \\ \cos n\omega T, & n \ge 0. \end{cases}$$

Recall that

$$\cos x = \frac{e^{jx} + e^{-jx}}{2},$$

so that

$$r(nT) = \frac{e^{jn\omega T} + e^{-jn\omega T}}{2} = \frac{e^{jn\omega T}}{2} + \frac{e^{-jn\omega T}}{2}.$$
 (6.14)

But we already know from (6.12) that the z-transform of an exponential function is

$$R(e^{-anT}) = R(z) = \frac{z}{z - e^{-aT}}.$$

Therefore, substituting in (6.14) gives

$$R(z) = \frac{1}{2} \left(\frac{z}{z - e^{j\omega T}} + \frac{z}{z - e^{-j\omega T}} \right)$$

$$R(z) = \frac{z(z - \cos \omega T)}{z^2 - 2z \cos \omega T + 1}.$$

6.2.7 Discrete Impulse Function

Consider the discrete impulse function defined as

$$\delta(n) = \begin{cases} 1, & n = 0, \\ 0, & n \neq 0. \end{cases}$$

From (6.11),

$$R(z) = \sum_{n=0}^{\infty} r(nT) z^{-n} = \sum_{n=0}^{\infty} z^{-n} = 1.$$

6.2.8 Delayed Discrete Impulse Function

The delayed discrete impulse function is defined as

$$\delta(n-k) = \begin{cases} 1, & n = k > 0, \\ 0, & n \neq k. \end{cases}$$

From (6.11),

$$R(z) = \sum_{n=0}^{\infty} r(nT) z^{-n} = \sum_{n=0}^{\infty} z^{-n} = z^{-n}.$$

Tables of Z-Transforms

f(kT)	F(z)
$\delta(t)$	1
1	$\frac{z}{z-1}$
kT	$\frac{Tz}{(z-1)^2}$
$(kT)^{2}$	$\frac{T^2 z(z+1)}{2(z-1)^3}$
$(kT)^{3}$	$\frac{T^3 z(z^2 + 4z + 1)}{(z-1)^4}$
e^{-akT}	$\frac{z}{z - e^{-aT}}$
kTe^{-akT}	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$
a^k	$\frac{z}{z-a}$
$1 - e^{-akT}$	$\frac{z(1 - e^{-aT})}{(z - 1)(z - e^{-aT})}$
sin akT	$\frac{z\sin aT}{z^2 - 2z\cos aT + 1}$
$\cos akT$	$\frac{z(z-\cos aT)}{z^2 - 2z\cos aT + 1}$
$e^{-akT}\sin bkT$	$\frac{e^{-aT}z\sin bT}{z^2 - 2e^{-aT}z\cos bT + e^{-2aT}}$
$e^{-akT}\cos bkT$	$\frac{z^2 - e^{-aT}z\cos bT}{z^2 - 2e^{-aT}z\cos bT + e^{-2aT}}$

6.2.10 The z-Transform of a Function Expressed as a Laplace Transform

It is important to realize that although we denote the *z*-transform equivalent of G(s) by G(z), G(z) is *not* obtained by simply substituting *z* for *s* in G(s). We can use one of the following methods to find the *z*-transform of a function expressed in Laplace transform format:

- Given *G*(*s*), calculate the time response *g*(*t*) by finding the inverse Laplace transform of *G*(*s*). Then find the *z*-transform either from the first principles, or by looking at the *z*-transform tables.
- Given G(s), find the *z*-transform G(z) by looking at the tables which give the Laplace transforms and their equivalent *z*-transforms (e.g. Table 6.1).
- Given the Laplace transform G(s), express it in the form G(s) = N(s)/D(s) and then use the following formula to find the *z*-transform G(z):

$$G(z) = \sum_{n=1}^{p} \frac{N(x_n)}{D'(x_n)} \frac{1}{1 - e^{x_n T} z^{-1}},$$
(6.15)

where $D' = \partial D / \partial s$ and the $x_n, n = 1, 2, ..., p$, are the roots of the equation D(s) = 0.

Example 6.2

Let

$$G(s) = \frac{1}{s^2 + 5s + 6}.$$

Determine G(z) by the methods described above.

Solution

Method 1: By finding the inverse Laplace transform. We can express G(s) as a sum of its partial fractions:

$$G(s) = \frac{1}{(s+3)(s+2)} = \frac{1}{s+2} - \frac{1}{s+3}.$$
(6.16)

The inverse Laplace transform of (6.16) is

$$g(t) = L^{-1}[G(s)] = e^{-2t} - e^{-3t}.$$
(6.17)

From the definition of the z-transforms we can write (6.17) as

$$G(z) = \sum_{n=0}^{\infty} (e^{-2nT} - e^{-3nT})z^{-n}$$

= $(1 + e^{-2T}z^{-1} + e^{-4T}z^{-2} + \dots) - (1 + e^{-3T}z^{-1} + e^{-6T}z^{-2} + \dots)$
= $\frac{z}{z - e^{-2T}} - \frac{z}{z - e^{-3T}}$

Method 2: By using the z-transform transform tables for the partial product. From Table 6.1, the z-transform of 1/(s + a) is $z/(z - e^{-aT})$. Therefore the z-transform of (6.16) is

$$G(z) = \frac{z}{z - e^{-2T}} - \frac{z}{z - e^{-3T}}$$

$$G(z) = \frac{z(e^{-2T} - e^{-3T})}{(z - e^{-2T})(z - e^{-3T})}.$$

Method 3: By using the z-transform tables for G(s). From Table 6.1, the z-transform of

$$G(s) = \frac{b-a}{(s+a)(s+b)}$$
(6.18)

is

$$G(z) = \frac{z(e^{-aT} - e^{-bT})}{(z - e^{-aT})(z - e^{-bT})}.$$
(6.19)

Comparing (6.18) with (6.16) we have, a = 2, b = 3. Thus, in (6.19) we get

$$G(z) = \frac{z(e^{-2T} - e^{-3T})}{(z - e^{-2T})(z - e^{-3T})}.$$

Laplace transform	Corresponding z-transform
1	Z
s	$\overline{z-1}$
1	Tz
$\overline{s^2}$	$(z-1)^2$
1	$T^2 z(z+1)$
$\overline{s^3}$	$2(z-1)^3$
1	Z
s + a	$z - e^{-aT}$
1	Tze^{-aT}
$(s+a)^2$	$\overline{(z-e^{-aT})^2}$
a	$z(1-e^{-aT})$
$\overline{s(s+a)}$	$\overline{(z-1)(z-e^{-aT})}$
b-a	$z(e^{-aT} - e^{-bT})$
$\overline{(s+a)(s+b)}$	$\overline{(z-e^{-aT})(z-e^{-bT})}$
(b-a)s	$(b-a)z^2 - (be^{-aT} - ae^{-bT})z$
$\overline{(s+a)(s+b)}$	$(z - e^{-aT})(z - e^{-bT})$
а	$z \sin aT$
$s^2 + a^2$	$\overline{z^2 - 2z \cos aT + 1}$
S	$z^2 - z \cos aT$
$s^2 + a^2$	$\overline{z^2 - 2z \cos aT + 1}$
S	$z[z - e^{-aT}(1 + aT)]$
$\overline{(s+a)^2}$	$(z - e^{-aT})^2$

Method 4: By using equation (6.15). Comparing our expression

$$G(s) = \frac{1}{s^2 + 5s + 6}$$

with (6.15), we have N(s) = 1, $D(s) = s^2 + 5s + 6$ and D'(s) = 2s + 5, and the roots of D(s) = 0 are $x_1 = -2$ and $x_2 = -3$. Using (6.15),

$$G(z) = \sum_{n=1}^{2} \frac{N(x_n)}{D'(x_n)} \frac{1}{1 - e^{x_n T} z^{-1}}$$

or, when $x_1 = -2$,

$$G_1(z) = \frac{1}{1} \frac{1}{1 - e^{-2T} z^{-1}}$$

and when $x_1 = -3$,

$$G_2(z) = \frac{1}{-1} \frac{1}{1 - e^{-3T} z^{-1}}.$$

Thus,

$$G(z) = \frac{1}{1 - e^{-2T}z^{-1}} - \frac{1}{1 - e^{-3T}z^{-1}} = \frac{z}{z - e^{-2T}} - \frac{z}{z - e^{-3T}}$$

f(kT)	F(z)
$\delta(t)$	1
1	$\frac{z}{z-1}$
kT	$\frac{\frac{z}{Tz}}{(z-1)^2}$
e^{-akT}	$\frac{(z-1)^2}{z}$
kTe^{-akT}	$\frac{z - e^{-aT}}{Tze^{-aT}}$
a^k	$\frac{(z-e^{-\alpha T})^2}{\frac{z}{z-\alpha}}$
$1 - e^{-akT}$	$\frac{z - a}{z(1 - e^{-aT})}$
sin akT	$\frac{(z-1)(z-e^{-aT})}{z\sin aT}$ $\frac{z\sin aT}{z^2 - 2z\cos aT + 1}$
$\cos a k T$	$\frac{z(z - \cos aT)}{z^2 - 2z\cos aT + 1}$

Table 6.1Some commonly used z-transforms

Most of the properties of the *z*-transform are analogs of those of the Laplace transforms. Important *z*-transform properties are discussed in this section.

1. Linearity property

Suppose that the *z*-transform of f(nT) is F(z) and the *z*-transform of g(nT) is G(z). Then

$$Z[f(nT) \pm g(nT)] = Z[f(nT)] \pm Z[g(nT)] = F(z) \pm G(z)$$
(6.20)

and for any scalar a

$$Z[af(nT)] = aZ[f(nT)] = aF(z)$$
(6.21)

2. Left-shifting property

Suppose that the *z*-transform of f(nT) is F(z) and let y(nT) = f(nT + mT). Then

$$Y(z) = z^m F(z) - \sum_{i=0}^{m-1} f(iT) z^{m-i}.$$
(6.22)

If the initial conditions are all zero, i.e. f(iT) = 0, i = 0, 1, 2, ..., m - 1, then,

$$Z[f(nT + mT)] = z^{m}F(z).$$
(6.23)

3. Right-shifting property

Suppose that the *z*-transform of f(nT) is F(z) and let y(nT) = f(nT - mT). Then

$$Y(z) = z^{-m} F(z) + \sum_{i=0}^{m-1} f(iT - mT) z^{-i}.$$
(6.24)

If f(nT) = 0 for k < 0, then the theorem simplifies to

$$Z[f(nT - mT)] = z^{-m}F(z).$$
(6.25)

4. Attenuation property Suppose that the *z*-transform of f(nT) is F(z). Then,

$$Z[e^{-anT} f(nT)] = F[ze^{aT}].$$
(6.26)

This result states that if a function is multiplied by the exponential e^{-anT} then in the *z*-transform of this function *z* is replaced by ze^{aT} .

5. Initial value theorem

Suppose that the *z*-transform of f(nT) is F(z). Then the initial value of the time response is given by

$$\lim_{n \to 0} f(nT) = \lim_{z \to \infty} F(z).$$
(6.27)

6. Final value theorem

Suppose that the *z*-transform of f(nT) is F(z). Then the final value of the time response is given by

$$\lim_{n \to \infty} f(nT) = \lim_{z \to 1} (1 - z^{-1}) F(z).$$
(6.28)

Note that this theorem is valid if the poles of $(1 - z^{-1})F(z)$ are inside the unit circle or at z = 1.

Properties of Z-Transforms: Examples

Example 6.3

The *z*-transform of a unit ramp function r(nT) is

$$R(z) = \frac{Tz}{(z-1)^2}.$$

Find the *z*-transform of the function 5r(nT).

Solution

Using the linearity property of *z*-transforms,

$$Z[5r(nT)] = 5R(z) = \frac{5Tz}{(z-1)^2}.$$

Properties of Z-Transforms: Examples

Example 6.4

The *z*-transform of trigonometric function $r(nT) = \sin nwT$ is

$$R(z) = \frac{z \sin wT}{z^2 - 2z \cos wT + 1}.$$

find the *z*-transform of the function $y(nT) = e^{-2T} \sin nWT$.

Solution

Using property 4 of the *z*-transforms,

$$Z[y(nT)] = Z[e^{-2T}r(nT)] = R[ze^{2T}].$$

Thus,

$$Z[y(nT)] = \frac{ze^{2T}\sin wT}{(ze^{2T})^2 - 2ze^{2T}\cos wT + 1} = \frac{ze^{2T}\sin wT}{z^2e^{4T} - 2ze^{2T}\cos wT + 1}$$

or, multiplying numerator and denominator by e^{-4T} ,

$$Z[y(nT)] = \frac{ze^{-2T}\sin wT}{z^2 - 2ze^{-2T} + e^{-4T}}.$$

Properties of Z-Transforms: Examples

Example 6.5

Given the function

$$G(z) = \frac{0.792z}{(z-1)(z^2 - 0.416z + 0.208)},$$

find the final value of g(nT).

Solution

Using the final value theorem,

$$\lim_{n \to \infty} g(nT) = \lim_{z \to 1} (1 - z^{-1}) \frac{0.792z}{(z - 1)(z^2 - 0.416z + 0.208)}$$
$$= \lim_{z \to 1} \frac{0.792}{z^2 - 0.416z + 0.208}$$
$$= \frac{0.792}{1 - 0.416 + 0.208} = 1.$$

End

Thanks