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Sampling

Sampled data system operates on discrete-time rather than continuous-time signals.
A digital computer is used as the controller in such a system.
A D/A converter 1s usually connected to the output of the computer to drive the plant.

We will assume that all the signals enter and leave the computer at the same fixed times,
known as the sampling times.

The digital computer performs the controller or the compensation function within the
system.

The A/D converter converts the error signal, which 1s a continuous signal, into digital
form so that it can be processed by the computer.

At the computer output the D/A converter converts the digital output of the computer into
a form which can be used to drive the plant.
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THE SAMPLING PROCESS

A sampler is basically a switch that closes every 7' seconds.

Sampler %
: : : r(t) r(t)
When a continuous 51gna1 r (7) 1s sgmple'd at regular . .
intervals 7', the resulting discrete-time signal Continuous Sampled
signal signal

N0 )




THE SAMPLING PROCESS

The 1deal sampling process can be considered as the multiplication of a pulse train with a

continuous signal, 1.e.
r(t) = P(t)r(),
where P(7) is the delta pulse train as shown in Figure 6.6, expressed as

P(t)y= Y &t —nT):

n=—0o

thus,

h

P(t)

i) = r() Z 8t —nT)

n=—0o

2T 3T 4T ST

Figure 6.6 Delta pulse train
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THE SAMPLING PROCESS

or
. oo
rt) = Z r(nT)s(t —nT).
H=—00
Now
r(t)y=0, fort <0,
and

o0
ri(t)y =Y _r(nT)8(t —nT).
n=0
Taking the Laplace transform of (6.6) gives
2
R*(s) =Y r(nT)e ™.
n=0

Equation (6.7) represents the Laplace transform of a sampled continuous signal (7).

(6.4)

(6.5)

(6.6)

(6.7)



/ero-order hold (ZOH)

A D/A converter converts the sampled signal #*(f) into a continuous signal v(¢). The D/A
can be approximated by a zero-order hold (ZOH) circuit as shown in Figure 6.7. This circuit
remembers the last information until a new sample is obtained, 1.e. the zero-order hold takes the
value r(nT) and holds it constant for nT <t < (n+ 1)T, and the value r(nT) 1s used during
the sampling period.

The impulse response of a zero-order hold is shown in Figure 6.8. The transfer function of
a zero-order hold 1s given by

G(t)=H(t)— H(t = T). (6.8)
Sampler
r(t) '/p (1)
Zero-order
° | hold > yO
Continuous Sampled
signal signal

Figure 6.7 A sampler and zero-order hold



/ero-order hold (ZOH)

g(t) 4

>
0 T

Figure 6.8 Impulse response of a zero-order hold

where H (1) 1s the step function, and taking the Laplace transform yields

F—T.i‘ l . E—T.ﬁ'
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* A sampler and zero-order hold can accurately follow the input signal if the sampling time 7 1s
small compared to the transient changes in the signal.

* The response of a sampler and a zero-order hold to a ramp input is shown in Figure 6.9 for
two different values of sampling period.

r(t) and y(1) r(t) and y(t)

&
F 3

T=0.6 second ! T=1 second

» seconds ;
' l l | l l » seconds




Example

Figure 6.10 shows an 1deal sampler followed by a zero-order hold.

Assuming the mput signal » () 1s as shown 1n the figure, show the waveforms after
the sampler and also after the zero-order hold.

-
/ Zero-order
> > V()

hold
r(t) r¥*(t)

Figure 6.10 Ideal sampler and zero-order hold for Example 6.1
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./ Zero-order ,
" > v(l)

_ hold
F(t) r*(1)

Figure 6.11 Solution for Example 6.1



Quantization

= Quantization 1s the process of representing an analogue or continuous signal in
discrete-states.

=" Any A/D conversion involves quantization error which is due to the fact that
analogue numbers should be rounded off to the nearest digital level.

* The analogue quantity 1s approximated by a finite digital number (digital word).

»Quantization Level depend on the Full-scale range (FSR) and the number of bits 1n
the quantizer (n).

"Quantization level (Q)= FSR /(2m)
=(Quantization error ranges between [—Q/2 --- Q/2] = r(t)-y(t)




Example Quantization

Find the Quantization error of the given
signal att=0, 1, 2, 3, 4 and 5.

0.3 -0.3

DN B W N = O

0
1
2
3
4
5

0.9
2.1
2.8
3.9
5.1

0.1
-0.1
0.2
0.1
-0.1

Amplitude

Quantization of Ramp wave




THE Z-TRANSFORM

The z-transformation is used in sampled data systems just as the Laplace transformation is used in
continuous-time systems.

The z-transform is defined so that: Z = es7

the z-transform of the function r(7) 1s Z[r(f)] = R(z) which, from (6.7), 1s given by

o0
R(z) = ZF(HT)E_”.
n=>0
Notice that the z-transform consists of an infinite series in the complex variable z. and

RZ)=r(0)+r(T)z " +rQRT)z >+ rBT)z 7 +...,

1.e. the r(nT) are the coefficients of this power series at different sampling instants.



THE Z-TRANSFORM

" The response of a sampled data system can be determined easily by
finding the z-transform of the output and then calculating the inverse z-
transform.

= Just like the Laplace transform techniques used in continuous-time
systems.



THE Z-TRANSFORM

é6.2.1 Unif Step Funcfion

Consider a unit step function as shown in Figure 6.12, defined as

r(nT)
0, n <0, A
F(HT):{I, n>0. !
From (6.11),
= . >t
R)=) rinT)z" =) z"=1+z"+z2+77 +77 + ... 0 T 2T 3T 4T
n=0 n=

or Figure 6.12 Unit step function




THE Z-TRANSFORM

6.2.2 Unif Ramp Function

Consider a unit ramp function as shown in Figure 6.13, defined by

r(nT)
'y
0, n<A0, 4
r(nl) = lnT, n > 0. 3
From (6.11), :i T I
oo oo ? > 1
R(z)=Y r(nT)z™" =) nTz " =T 427777 43727 +4T + .. 0 T 2T 3T 4T
" =0 Figure 6.13 Unit ramp function
or
Tz
R(z)=— for [z] > 1.

(z— 1)



THE Z-TRANSFORM

6.2.3 Exponential Function

Consider the exponential function shown in Figure 6.14, defined as H(aT)

0, n <0,
r(nT) = {E_,_M o

¥

From (6.11),

S 5 N T

[TT? g

o0 [ 4]
R(z) = Zr(nT)z_” — Ze_anrz_” =147 p 20l =2 4 p3aT =3 4 0 T 2T 3T 4T
n=>0 =0

Figure 6.14 Exponential function

or

- l < —aT
R(2) = e e e i for |z] < e . (6.12)

A




THE Z-TRANSFORM

6.2.4 General Exponential Function

Consider the general exponential function

0, n <20,
rin) = i "

p', n=0.

From (6.11),
o o
Rz)=) r(nT)z™" =Y p'z"=1+pz '+ p2z 24 pzi4...
=0 =0

or

-
s

R(z) = , for |z] < p].

L

e

Similarly, we can show that

R(p™") = -

o

e




HE Z-TRANSFORM

6.2.5 Sine Function

Consider the sine function, defined as

_ 0, n <0,
r(nT) = isin noT. n=>0.
Recall that
X — e7Jx
sin ¥ = ——,
2j
so that
ejan . e—jan {,jnmi'" E—jan
(nT) = = — . 6.13
r(nT) 7 2 5 (6.13)

But we already know from (6.12) that the z-transform of an exponential function is

v
Sy

R(E—QHT) — R(Z) — — .
I—c

Therefore, substituting in (6.13) gives
] z 7 ] z(e»‘f“"r . E—ij
R(@) = 5= - iwT - _ o—jaolT | ;i \ 22 _ ~(,jof —j@T
2j \z—el® 7—eJ® 2j \z= —z(el®" 4 e~ 1) 4 ]

zsinwT
72 _2zcoswT +1°

or




THE Z-TRANSFORM

6.2.6 Cosine Function

Consider the cosine function. defined as

0, n <0,
r(nT) = Ims nwl, n>=0.

Recall that

e 4 = I*

COS X = 5 :
so that
eJneT _|_€—j.r1wT ejneT e—jnoT
==t (6.14)

But we already know from (6.12) that the z-transform of an exponential function is

A

— T Y
REe™"") = R(2) = ——.

Therefore, substituting in (6.14) gives

1 Z Z
k(@) = 2 (z — eloT + Z— e—fw?")

2(z —coswT)
72 —2z7zcos T + 1

or




HE Z-

RANSFORM

6.2.7 Discrefe Impulse Function

Consider the discrete impulse function defined as

I, n=0,
o(n) = {0 n % 0.

From (6.11),

R(2)=) r(nT)z™" =

n=0

o0

n

=1,
=0



E Z-TRANSFORM

6.2.8 Delayed Discrete Impulse Funcfion

The delayed discrete impulse function is defined as

S(n —k) = {0’
From (6.11),

R(z) = ir(HTJz_” — Zz_”

n=0 =0

I, n = k=0,
n %+ k.



fkT) F(z)

a(1) 1
! il — 1
Tz
K (z —1)°
T?z(z+ 1)
wr g
Tz(z2 + 4z 4+ 1)
*TY : (z j_l;“+
Tables of Z-Transforms i
TE_—HT
kTe kT — ‘;_ﬂr}z
a® <
I—a
| — g—akT zZ(1 —e7)

z— 1)z — e—aT)
zsinal
z2 —2zcosaT + 1
iz —cosaT)
72 —2zcosaTl + 1
e T zsinbT

sinakT

cos akT

—akT o
e sin bkT
72 — 2Tz coshT + 247

2 —aT
I-—e zcosbhT
e % cos bkT

72— Qe Tz cos hT + 247




6.2.10 The z-Transform of a Function Expressed as a Laplace
Transform

It is important to realize that although we denote the z-transform equivalent of G(s) by G(2),
G (z) 1s not obtained by simply substituting 7 for s in G(s). We can use one of the following
methods to find the z-transform of a function expressed in Laplace transtorm format:

® Given G (s), calculate the time response g(7) by finding the inverse Laplace transform of G ().
Then find the z-transform either from the first principles, or by looking at the z-transform
tables.

® Given G(s), find the z-tranform G(z) by looking at the tables which give the Laplace trans-
forms and their equivalent z-transforms (e.g. Table 6.1).

e Given the Laplace transform G(s), express it in the form G(s) = N(s)/D(s) and then use
the following formula to find the z-transform G(z):

p
G(z):ZN(x”) l —, (6.15)



THE Z-TRANSFORM: Example

Example 6.2
Let

G(s) =

s2+55+6
Determine G(z) by the methods described above.



THE Z-TRANSFORM: Example

Solution

Method 1: By finding the inverse Laplace transform. We can express G(s) as a sum of its
partial fractions:

1 1 1

G(s)= = — : (6.16)
(s+3)s+2) s+2 543
The inverse Laplace transform of (6.16) 1s
¢()=L7'[G(s)|=e 2 —e . (6.17)

From the definition of the z-transforms we can write (6.17) as
o0
G(:) — Z (€—2HT . e—?inT)z—n
n=0

_ (1 ‘|‘€_2TZ_] + €_4TZ_2 4+ ) . (1 ‘|‘€_3TZ_1 + €_6TZ_2 4+ .. )

rd i
ra r
Ay A

z—e 2z



THE Z-TRANSFORM: Example

Method 2: By using the z-transform transform tables for the partial product. From Table 6.1,
the z-transform of 1/(s + a) is z/(z — e~*!). Therefore the z-transform of (6.16) is

v v
A pe

G(2) = 7 —e2T 7 _ 3T

or

E(E_ZT - 8_3T)
7 — e_ZT)(z _ 8—33{’)'

G(z) =



THE Z-TRANSFORM: Example

Method 3: By using the z-transform tables for G(S). From Table 6.1, the z-transtorm of
b —a

G(s) =
(s +a)(s + D)

(6.18)

1S
E(G_HT o e—bT)
G = — o — 7 (6.19)
Comparing (6.18) with (6.16) we have, a« = 2, b = 3. Thus, in (6.19) we get
Z(€_2T . €—3T)
7 — e—zr)(z _ €—3T)'

G(z) =



Laplace transform Corresponding z-transform

] Z
s 7—1
1 Tz
52 (z— 1)
1 T?z(z+ 1)
3 20z —1)7
| Z
s+a 7 —eaT
I Tze T
(s +a)? (z—eaT)?
a 2(1 — e aT)
s(s +a) (z—1)(z —eT)
b—a Z(e ™ — 7P
(s +a)s +b) (z—e ) (z —e=PT)
(b —a)s (b —a)z? — (be T — qe™T)
(s +a)s+b) (7 — e—4T)(z — ¢—bT)
a zsinal
5?4 a? 72 —2zcosal + 1
s 22 —zcosaT
s+ a? 72 —2zcosaTl + 1
s Zlz—e (1 4+ al)]

(s +a)? (z — {;—EJTJE




THE Z-TRANSFORM: Example

Method 4: By using equation (6.15). Comparing our expression

with (6.15), we have N(s) =1, D(s) =s>+5s +6 and D'(s) = 2s + 5, and the roots of
D(s) =0are x; = —2 and x» = —3. Using (6.15),

G(z) = Z N(xp) I

D'(x,) 1 —exTz-1

n=I

or, when x; = =2,
| |
G1(2) = 11— e 2T
and when x| = —3,
| |
G2(0) = —11 =37z
Thus,
1 1 Z Z
G(z) = - — = — —



Table 6.1 Some commonly used z-transforms

J&T) F(z)
(1) 1
I Z

7 — 1

Tz

kT _tE

(z— 1)
' kT i,
. 7 —e ol

_ —aT

kT e kT I'ze ™

(-__ f)—aT)Z
ak Z

I—d
| — p—akT 7(1 — e—aT)

' (2= Dz — )
zsinal

sinakT :

7= —2zcosal + 1
cosakT 72(z —cosaT)

-

7= —2zcosal + 1




Properties of Z-Transforms

Most of the properties of the z-transform are analogs of those of the Laplace transtorms.
Important z-transform properties are discussed in this section |

. Linearity property
Suppose that the z-transform of f(n7) 1s F(z) and the z-transform of g(n7T) is G(z). Then

LI f(nT) £ gnl)| = Z| f(nT)] £ Z[g(nT)] = F(2) £ G(2) (6.20)
and for any scalar a

Zlaf(nT)) = aZ[f(nT)] = aF(2) (6.21)



Properties of Z-Transforms

2. Left-shifting property
Suppose that the z-transtform of f(nT)is F(z) and let yv(nT )= f(nT +mT ). Then

m—1
Y(z)=2"F(z)— ) fGT)?" " (6.22)
=0
If the initial conditions are all zero,1.e. f(iT)=0,i =0,1,2,...,m — 1, then,
ZIf(nT +mT)] = " F(2). (6.23)

3. Right-shifting property
Suppose that the z-transform of f(nT)1s F(z) and let v(nT )= f(nT —mT). Then

m—1
Y@ =2"F@)+ )Y fGT—mT)z" (6.24)
1=0

It f(nT)=0fork < 0, then the theorem simplifies to
ZIf(nT —mT)] = z77"F(2). (6.25)



Properties of Z-Transforms

4. Attenuation property

N

Suppose that the z-transform of f(nT) s F(z). Then,
Zle™ T f(nT)] = Flze]. (6.26)

This result states that if a function is multiplied by the exponential ¢=¢"T then in the

z-transform of this function z is replaced by ze“’.

. Initial value theorem

Suppose that the z-transform of f(n7T)1s F(z). Then the initial value of the time response
is given by

lim f(nT)= lim F(z). (6.27)
n—0 7— 00



Properties of Z-Transforms

6. Final value theorem
Suppose that the z-transform of f(n7) 1s F(z). Then the final value of the time response is
given by

lim f(nT) = lim(1 — 7 HE(2). (6.28)

Note that this theorem is valid if the poles of (1 — z~1)F(z) are inside the unit circle or at

z=1.



Properties of Z-Transforms: Examples

Example 6.3

The z-transform of a unit ramp function r(nT ) 1s
Iz
(z— 12

R(z) =

Find the z-transform of the function 5r(nT).

Solution

Using the linearity property of z-transforms,
5T’z
(z— 1%

ZI5r(nT)] =SR(2) =



Properties of Z-Transforms: Examples

Example 6.4

The z-transform of trigonometric function r(n7T) = sinnwT is
zsinwT

72 —2zcoswT + 1

find the z-transform of the function y(nT) = e~ ! sinn WT.

R(z) =

Solution

Using property 4 of the z-transforms,
ZIy(nT)] = Zle 2 r(nT)] = R[ze*!].

Thus,

2T 2T

ze<t sinwT ze<' sinwT

ZlvinT — —
[} (” )] (ZEzT)Z _ QZE,ZT cosw T + | 32341" — ZEEZT coswT + |

or, multiplying numerator and denominator by e—*7

zfz_ZT sinwT

72— 270-2T 4 4T

Zly(nT)] =



Properties of Z-Transforms: Examples

Example 6.5

Given the function
0.792z7
(z — 1)(z2 —0.4167 +0.208)

G(z) =
find the final value of g(nT).

Solution

Using the final value theorem,

_ o O 0.7927
lim g(nT) = lim(l —z7") _
n— 00 7—1 (z — 1)(z2 —0.416z7 + 0.208)
, 0.792
= lim _
7—172 —0.4167 4+ 0.208
0.792

1 —0416+ 0208



End

Thanks
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