Z-Transform

Digital Control

Dr. Ahmad Al-Mahasneh

In the previous lecture

* Sampling
* Quantization
* Z-transform

Outline

1. Properties of z-transform
2. Inverse z-Transforms

Table 6.1 Some commonly used z-transforms

$f(k T)$	$F(z)$
$\delta(t)$	$\frac{1}{z-1}$
1	$\frac{z z}{(z-1)^{2}}$
$k T$	$\frac{z-e^{-a T}}{z-a T}$
$e^{-a k T}$	$\frac{T z e^{-a T}}{\left(z-e^{-a T}\right)^{2}}$
$k T e^{-a k T}$	$\frac{z}{z-a}$
a^{k}	$\frac{z\left(1-e^{-a T}\right)}{(z-1)\left(z-e^{-a T}\right)}$
$1-e^{-a k T}$	$\frac{z \sin a T}{z^{2}-2 z \cos a T+1}$
$\sin a k T$	$\frac{z(z-\cos a T)}{z^{2}-2 z \cos a T+1}$
$\cos a k T$	

Laplace transform

Corresponding z-transform

$\frac{1}{s}$	$\frac{z}{z-1}$
$\frac{1}{s^{2}}$	$\frac{T z}{(z-1)^{2}}$
$\frac{1}{s^{3}}$	$\frac{T^{2} z(z+1)}{2(z-1)^{3}}$
$\frac{1}{s+a}$	$\frac{z}{z-e^{-a T}}$
$\frac{1}{(s+a)^{2}}$	$\frac{T z e^{-a T}}{\left(z-e^{-a T}\right)^{2}}$
$\frac{a}{s(s+a)}$	$\frac{z\left(1-e^{-a T}\right)}{(z-1)\left(z-e^{-a T}\right)}$
$\frac{b-a}{(s+a)(s+b)}$	$\frac{z\left(e^{-a T}-e^{-b T}\right)}{\left(z-e^{-a T}\right)\left(z-e^{-b T}\right)}$
$\frac{(b-a) s}{(s+a)(s+b)}$	$\frac{(b-a) z^{2}-\left(b e^{-a T}-a e^{-b T}\right) z}{\left(z-e^{-a T}\right)\left(z-e^{-b T}\right)}$
$\frac{a}{s^{2}+a^{2}}$	$\frac{z \sin a T}{z^{2}-2 z \cos a T+1}$
$\frac{s}{s^{2}+a^{2}}$	$\frac{z^{2}-z \cos a T}{z^{2}-2 z \cos a T+1}$
$\frac{s}{(s+a)^{2}}$	$\frac{z\left[z-e^{-a T}(1+a T)\right]}{\left(z-e^{-a T}\right)^{2}}$

Properties of Z-Transforms

Most of the properties of the z-transform are analogs of those of the Laplace transforms. Important z-transform properties are discussed in this section.

1. Linearity property

Suppose that the z-transform of $f(n T)$ is $F(z)$ and the z-transform of $g(n T)$ is $G(z)$. Then

$$
\begin{equation*}
Z[f(n T) \pm g(n T)]=Z[f(n T)] \pm Z[g(n T)]=F(z) \pm G(z) \tag{6.20}
\end{equation*}
$$

and for any scalar a

$$
\begin{equation*}
Z[a f(n T)]=a Z[f(n T)]=a F(z) \tag{6.21}
\end{equation*}
$$

Properties of Z-Transforms

2. Left-shifting property

Suppose that the z-transform of $f(n T)$ is $F(z)$ and let $y(n T)=f(n T+m T)$. Then

$$
\begin{equation*}
Y(z)=z^{m} F(z)-\sum_{i=0}^{m-1} f(i T) z^{m-i} . \tag{6.22}
\end{equation*}
$$

If the initial conditions are all zero, i.e. $f(i T)=0, i=0,1,2, \ldots, m-1$, then,

$$
\begin{equation*}
Z[f(n T+m T)]=z^{m} F(z) . \tag{6.23}
\end{equation*}
$$

3. Right-shifting property

Suppose that the z-transform of $f(n T)$ is $F(z)$ and let $y(n T)=f(n T-m T)$. Then

$$
\begin{equation*}
Y(z)=z^{-m} F(z)+\sum_{i=0}^{m-1} f(i T-m T) z^{-i} . \tag{6.24}
\end{equation*}
$$

If $f(n T)=0$ for $k<0$, then the theorem simplifies to

$$
\begin{equation*}
Z[f(n T-m T)]=z^{-m} F(z) . \tag{6.25}
\end{equation*}
$$

Properties of Z-Transforms

4. Attenuation property

Suppose that the z-transform of $f(n T)$ is $F(z)$. Then,

$$
\begin{equation*}
Z\left[e^{-a n T} f(n T)\right]=F\left[z e^{a T}\right] \tag{6.26}
\end{equation*}
$$

This result states that if a function is multiplied by the exponential $e^{-a n T}$ then in the z-transform of this function z is replaced by $z e^{a T}$.
5. Initial value theorem

Suppose that the z-transform of $f(n T)$ is $F(z)$. Then the initial value of the time response is given by

$$
\begin{equation*}
\lim _{n \rightarrow 0} f(n T)=\lim _{z \rightarrow \infty} F(z) \tag{6.27}
\end{equation*}
$$

Properties of Z-Transforms

6. Final value theorem

Suppose that the z-transform of $f(n T)$ is $F(z)$. Then the final value of the time response is given by

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f(n T)=\lim _{z \rightarrow 1}\left(1-z^{-1}\right) F(z) . \tag{6.28}
\end{equation*}
$$

Note that this theorem is valid if the poles of $\left(1-z^{-1}\right) F(z)$ are inside the unit circle or at $z=1$.

Properties of Z-Transforms: Examples

Example 6.3

The z-transform of a unit ramp function $r(n T)$ is

$$
R(z)=\frac{T z}{(z-1)^{2}} .
$$

Find the z-transform of the function $5 r(n T)$.

Solution

Using the linearity property of z-transforms,

$$
Z[5 r(n T)]=5 R(z)=\frac{5 T z}{(z-1)^{2}}
$$

Properties of Z-Transforms: Examples

Example 6.4

The z-transform of trigonometric function $r(n T)=\sin n w T$ is

$$
R(z)=\frac{z \sin w T}{z^{2}-2 z \cos w T+1}
$$

find the z-transform of the function $y(n T)=e^{-2 T} \sin n W T$.

Solution

Using property 4 of the z-transforms,

$$
Z[y(n T)]=Z\left[e^{-2 T} r(n T)\right]=R\left[z e^{2 T}\right] .
$$

Thus,

$$
Z[y(n T)]=\frac{z e^{2 T} \sin w T}{\left(z e^{2 T}\right)^{2}-2 z e^{2 T} \cos w T+1}=\frac{z e^{2 T} \sin w T}{z^{2} e^{4 T}-2 z e^{2 T} \cos w T+1}
$$

or, multiplying numerator and denominator by $e^{-4 T}$,

$$
Z[y(n T)]=\frac{z e^{-2 T} \sin w T}{z^{2}-2 z e^{-2 T}+e^{-4 T}}
$$

Properties of Z-Transforms: Examples

Example 6.5

Given the function

$$
G(z)=\frac{0.792 z}{(z-1)\left(z^{2}-0.416 z+0.208\right)}
$$

find the final value of $g(n T)$.

Solution

Using the final value theorem,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} g(n T) & =\lim _{z \rightarrow 1}\left(1-z^{-1}\right) \frac{0.792 z}{(z-1)\left(z^{2}-0.416 z+0.208\right)} \\
& =\lim _{z \rightarrow 1} \frac{0.792}{z^{2}-0.416 z+0.208} \\
& =\frac{0.792}{1-0.416+0.208}=1
\end{aligned}
$$

Inverse Z-transform

$>$ The inverse z-transform is obtained in a similar way to the inverse Laplace transforms.
$>$ Generally, the z-transforms are the ratios of polynomials in the complex variable z, with the numerator
$>$ polynomial being of order no higher than the denominator.
$>$ By finding the inverse z-transform we find the sequence associated with the given z transform polynomial. As in the case of inverse Laplace transforms, we are interested in the output time response of a system.
$>$ Therefore, we use an inverse transform to obtain $y(t)$ from $Y(z)$.

Inverse Z-transform

$>$ There are several methods to find the inverse z -transform of a given function.
$>$ The following methods will be described here:

1. Power series (long division)
2. Expanding $Y_{(z)}$ into partial fractions and using z-transform tables to find the inverse transforms.
3. Obtaining the inverse z -transform using an inversion integral.

Inverse Z-transform

Given a z-transform function $Y(z)$, we can find the coefficients of the associated sequence $y(n T)$ at the sampling instants by using the inverse z-transform. The time function $y(t)$ is then determined as

$$
y(t)=\sum_{n=0}^{\infty} y(n T) \delta(t-n T) .
$$

Method 1: Power series. This method involves dividing the denominator of $Y(z)$ into the numerator such that a power series of the form

$$
Y(z)=y_{0}+y_{1} z^{-1}+y_{2} z^{-2}+y_{3} z^{-3}+\ldots
$$

is obtained. Notice that the values of $y(n)$ are the coefficients in the power series.

Inverse Z-transform

Example 6.6

Find the inverse z-transform for the polynomial

$$
Y(z)=\frac{z^{2}+z}{z^{2}-3 z+4}
$$

Inverse Z-transform

Solution

Dividing the denominator into the numerator gives

$$
\begin{aligned}
& z^{2}-3 z+4 \begin{array}{l}
1+4 z^{-1}+8 z^{-2}+8 z^{-3} \\
z^{2}+z \\
z^{2}-3 z+4 \\
4 z-4
\end{array} \\
& \frac{4 z-12+16 z^{-1}}{8-16 z^{-1}} \\
& \frac{8-24 z^{-1}+32 z^{-2}}{8 z^{-1}-32 z^{-2}} \\
& 8 z^{-1}-24 z^{-2}+32 z^{-3}
\end{aligned}
$$

and the coefficients of the power series are

$$
\begin{aligned}
& y(0)=1, \\
& y(T)=4, \\
& y(2 T)=8, \\
& y(3 T)=8,
\end{aligned}
$$

Inverse Z-transform

The required sequence is

$$
y(t)=\delta(t)+4 \delta(t-T)+8 \delta(t-2 T)+8 \delta(t-3 T)+\ldots
$$

Figure 6.15 shows the first few samples of the time sequence $y(n T)$.

Figure 6.15 First few samples of $y(t)$

Inverse Z-transform

Example 6.7

Find the inverse z-transform for $Y(z)$ given by the polynomial

$$
Y(z)=\frac{z}{z^{2}-3 z+2} .
$$

Inverse Z-transform

Solution

Dividing the denominator into the numerator gives

$$
\begin{aligned}
& z ^ { 2 } - 3 z + 2 \longdiv { z ^ { - 1 } + 3 z ^ { - 2 } + 7 z ^ { - 3 } + 1 5 z ^ { - 4 } } \\
& \frac{z-3+2 z^{-1}}{3-2 z^{-1}} \\
& \frac{3-9 z^{-1}+6 z^{-2}}{7 z^{-1}-6 z^{-2}} \\
& \frac{7 z^{-1}-21 z^{-2}+14 z^{-3}}{15 z^{-2}-14 z^{-3}} \\
& 15 z^{-2}-45 z^{-3}+30 z^{-4}
\end{aligned}
$$

and the coefficients of the power series are

$$
\begin{aligned}
& y(0)=0 \\
& y(T)=1 \\
& y(2 T)=3 \\
& y(3 T)=7 \\
& y(4 T)=15
\end{aligned}
$$

Inverse Z-transform

The required sequence is thus

$$
y(t)=\delta(t-T)+3 \delta(t-2 T)+7 \delta(t-3 T)+15 \delta(t-4 T)+\ldots
$$

Figure 6.16 First few samples of $y(t)$

Inverse Z-transform

Method 2: Partial fractions. Similar to the inverse Laplace transform techniques, a partial fraction expansion of the function $Y(z)$ can be found, and then tables of known z-transforms can be used to determine the inverse z-transform.

Looking at the z-transform tables, we see that there is usually a z term in the numerator. It is therefore more convenient to find the partial fractions of the function $Y(z) / z$ and then multiply the partial fractions by z to obtain a z term in the numerator.

Inverse Z-transform

Example 6.8

Find the inverse z-transform of the function

$$
Y(z)=\frac{z}{(z-1)(z-2)}
$$

Solution

The above expression can be written as

$$
\frac{Y(z)}{z}=\frac{1}{(z-1)(z-2)}=\frac{A}{z-1}+\frac{B}{z-2} .
$$

The values of A and B can be found by equating like powers in the numerator, i.e.

$$
A(z-2)+B(z-1) \equiv 1
$$

We find $A=-1, B=1$, giving

$$
\frac{Y(z)}{z}=\frac{-1}{z-1}+\frac{1}{z-2}
$$

or

$$
Y(z)=\frac{-z}{z-1}+\frac{z}{z-2}
$$

Inverse Z-transform
From the z-transform tables we find that

$$
y(n T)=-1+2^{n}
$$

and the coefficients of the power series are

$$
\begin{aligned}
& y(0)=0 \\
& y(T)=1 \\
& y(2 T)=3 \\
& y(3 T)=7 \\
& y(4 T)=15
\end{aligned}
$$

so that the required sequence is

$$
y(t)=\delta(t-T)+3 \delta(t-2 T)+7 \delta(t-3 T)+15 \delta(t-4 T)+\ldots
$$

Inverse Z-transform

Example 6.9

Find the inverse z-transform of the function

$$
Y(z)=\frac{1}{(z-1)(z-2)}
$$

Inverse Z-transform

Solution

The above expression can be written as

$$
\frac{Y(z)}{z}=\frac{1}{z(z-1)(z-2)}=\frac{A}{z}+\frac{B}{z-1}+\frac{C}{z-2} .
$$

The values of A, B and C can be found by equating like powers in the numerator, i.e.

$$
A(z-1)(z-2)+B z(z-2)+C z(z-1) \equiv 1
$$

or

$$
A\left(z^{2}-3 z+2\right)+B z^{2}-2 B z+C z^{2}-C z \equiv 1
$$

giving

$$
\begin{aligned}
A+B+C & =0 \\
-3 A-2 B-C & =0 \\
2 A & =1
\end{aligned}
$$

The values of the coefficients are found to be $A=0.5, B=-1$ and $C=0.5$. Thus,

$$
\frac{Y(z)}{z}=\frac{1}{2 z}-\frac{1}{z-1}+\frac{1}{2(z-2)}
$$

$$
Y(z)=\frac{1}{2}-\frac{z}{z-1}+\frac{z}{2(z-2)} .
$$

Using the inverse z-transform tables, we find

$$
y(n T)=a-1+\frac{2^{n}}{2}=a-1+2^{n-1}
$$

where

$$
a=\left\{\begin{array}{cc}
1 / 2, & n=0, \\
0, & n \neq 0,
\end{array}\right.
$$

the coefficients of the power series are

$$
\begin{aligned}
& y(0)=0 \\
& y(T)=0 \\
& y(2 T)=1 \\
& y(3 T)=3 \\
& y(4 T)=7 \\
& y(5 T)=15
\end{aligned}
$$

Inverse Z-transform
and the required sequence is

$$
y(t)=\delta(t-2 T)+3 \delta(t-3 T)+7 \delta(t-4 T)+15 \delta(t-5 T)+\ldots
$$

Inverse Z-transform

The process of finding inverse z-transforms is aided by considering what form is taken by the roots of $Y(z)$. It is useful to distinguish the case of distinct real roots and that of multiple order roots.

Case I: Distinct real roots. When $Y(z)$ has distinct real roots in the form

$$
Y(z)=\frac{N(z)}{\left(z-p_{1}\right)\left(z-p_{2}\right)\left(z-p_{3}\right) \ldots\left(z-p_{n}\right)},
$$

then the partial fraction expansion can be written as

$$
Y(z)=\frac{A_{1}}{z-p_{1}}+\frac{A_{2}}{z-p_{2}}+\frac{A_{3}}{z-p_{3}}+\ldots+\frac{A_{n}}{z-p_{n}}
$$

and the coefficients A_{i} can easily be found as

$$
A_{i}=\left.\left(z-p_{i}\right) Y(z)\right|_{z=p_{i}} \quad \text { for } i=1,2,3, \ldots, n
$$

Example 6.10

Using the partial expansion method described above, find the inverse z-transform of

$$
Y(z)=\frac{z}{(z-1)(z-2)} .
$$

Solution

Rewriting the function as

$$
\frac{Y(z)}{z}=\frac{A}{z-1}+\frac{B}{z-2},
$$

we find that

$$
\begin{aligned}
& A=\left.(z-1) \frac{1}{(z-1)(z-2)}\right|_{z=1}=-1, \\
& B=\left.(z-2) \frac{1}{(z-1)(z-2)}\right|_{z=2}=1 .
\end{aligned}
$$

Thus,

$$
Y(z)=\frac{z}{z-1}+\frac{z}{z-2}
$$

and the inverse z-transform is obtained from the tables as

$$
y(n T)=-1+2^{n},
$$

Inverse Z-transform

Example 6.11

Using the partial expansion method described above, find the inverse z-transform of

$$
Y(z)=\frac{z^{2}+z}{(z-0.5)(z-0.8)(z-1)} .
$$

Solution

Rewriting the function as

$$
\frac{Y(z)}{z}=\frac{A}{z-0.5}+\frac{B}{z-0.8}+\frac{C}{z-1}
$$

we find that

$$
\begin{aligned}
A & =\left.(z-0.5) \frac{z+1}{(z-0.5)(z-0.8)(z-1)}\right|_{z=0.5}=10, \\
B & =\left.(z-0.8) \frac{z+1}{(z-0.5)(z-0.8)(z-1)}\right|_{z=0.8}=-30, \\
C & =\left.(z-1) \frac{z+1}{(z-0.5)(z-0.8)(z-1)}\right|_{z=1}=20 .
\end{aligned}
$$

Thus,

$$
Y(z)=\frac{10 z}{z-0.5}-\frac{30 z}{z-0.8}+\frac{20 z}{z-1}
$$

The inverse transform is found from the tables as

$$
y(n T)=10(0.5)^{n}-30(0.8)^{n}+20
$$

Inverse Z-transform

The coefficients of the power series are

$$
\begin{aligned}
& y(0)=0 \\
& y(T)=1 \\
& y(2 T)=3.3 \\
& y(3 T)=5.89
\end{aligned}
$$

and the required sequence is

$$
y(t)=\delta(t-T)+3.3 \delta(t-2 T)+5.89 \delta(t-3 T)+\ldots .
$$

Inverse Z-transform

Case II: Multiple order roots. When $Y(z)$ has multiple order roots of the form

$$
Y(z)=\frac{N(z)}{\left(z-p_{1}\right)\left(z-p_{1}\right)^{2}\left(z-p_{1}\right)^{3} \ldots\left(z-p_{1}\right)^{r}},
$$

then the partial fraction expansion can be written as

$$
Y(z)=\frac{\lambda_{1}}{z-p_{1}}+\frac{\lambda_{2}}{\left(z-p_{2}\right)^{2}}+\frac{\lambda_{3}}{\left(z-p_{1}\right)^{3}}+\ldots+\frac{\lambda_{r}}{\left(z-p_{1}\right)^{r}}
$$

and the coefficients λ_{i} can easily be found as

$$
\begin{equation*}
\lambda_{r-k}=\left.\frac{1}{k!} \frac{d^{k}}{d z^{k}\left[\left(z-p_{i}\right)^{r}(X(z) / z)\right]}\right|_{z=p_{i}} . \tag{6.29}
\end{equation*}
$$

Inverse Z-transform

Example 6.12

Using (6.29), find the inverse z-transform of

$$
Y(z)=\frac{z^{2}+3 z-2}{(z+5)(z-0.8)(z-2)^{2}}
$$

Solution

Rewriting the function as

$$
\frac{Y(z)}{z}=\frac{z^{2}+3 z-2}{z(z+5)(z-0.8)(z-2)^{2}}=\frac{A}{z}+\frac{B}{z+5}+\frac{C}{z-0.8}+\frac{D}{(z-2)}+\frac{E}{(z-2)^{2}}
$$

we obtain

$$
\begin{aligned}
& A=\left.z \frac{z^{2}+3 z-2}{z(z+5)(z-0.8)(z-2)^{2}}\right|_{z=0}=\frac{-2}{5 \times(-0.8) \times 4}=0.125, \\
& B=\left.(z+5) \frac{z^{2}+3 z-2}{z(z+5)(z-0.8)(z-2)^{2}}\right|_{z=-5}=\frac{8}{-5 \times(-5.8) \times 49}=0.0056, \\
& C=\left.(z-0.8) \frac{z^{2}+3 z-2}{z(z+5)(z-0.8)(z-2)^{2}}\right|_{z=0.8}=\frac{1.04}{0.8 \times 5.8 \times 1.14}=0.16,
\end{aligned}
$$

Inverse Z-transform

$$
\begin{aligned}
E & =\left.(z-2)^{2} \frac{z^{2}+3 z-2}{z(z+5)(z-0.8)(z-2)^{2}}\right|_{z=2}=\frac{8}{2 \times 7 \times 1.2}=0.48, \\
D & =\left.\frac{d}{d z}\left[\frac{z^{2}+3 z-2}{z(z+5)(z-0.8)}\right]\right|_{z=2} \\
& =\left.\frac{\left[z(z+5)\left(z-0.8(2 z+3)-\left(z^{2}+3 z-2\right)\left(3 z^{2}+8.4 z-4\right)\right]\right.}{\left(z^{3}+4.2 z^{2}-4 z\right)^{2}}\right|_{z=2}=-0.29 .
\end{aligned}
$$

We can now write $Y(z)$ as

$$
Y(z)=0.125+\frac{0.0056 z}{z+5}+\frac{0.016 z}{z-0.8}-\frac{0.29 z}{(z-2)}+\frac{0.48 z}{(z-2)^{2}}
$$

The inverse transform is found from the tables as

$$
y(n T)=0.125 a+0.0056(-5)^{n}+0.016(0.8)^{n}-0.29(2)^{n}+0.24 n(2)^{n},
$$

where

$$
a= \begin{cases}1, & n=0, \\ 0, & n \neq 0\end{cases}
$$

End

Thanks

