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Learning Methods: Unsupervised

Unsupervised or Self- organized
learning does not have a teacher
(i.e. desired responses are not

available.
Vector describing
state of the
. i environment
The network is tuned from input N Learning
Envircnment :l,> I
data Only .._'I-Z“-1.1.|-|.-I

The network weights are updated
to find features within the data and
therefore does automatic
classification.



Learning Methods: Unsupervised
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Hebbian learning

The basic rule is: ‘If a neuron receives
an mput from another neuron and 1f
both are highly active

i th neuron

f(net)

(mathematically have the same sign),
the weight between the neurons
should be strengthened’.

Wi

f(net;)
X —p <

The rule states that 1f the cross-
product of output and input, or n
correlation term o, x; 1s positive, this
results in an increase of weight w,,
otherwise the weight decreases.

Fire together, wire together



Hebbian learning

The weight update AW in Hebbian learning becomes

Aw;=no;x;=n f(net;) x;

N is the learning rate
Where

= f(net;)

neti = ZW]lx]



Example of Hebbian learning

Assume the neural
network with a single
bipolar binary neuron

having initial weight vector w

w =

X1

X3

X4

I

41 net>0
Wi J(net) = {—l net < ()

I

f(net) = sgn(net) —p0

w3

and three input vectors x!, x* and x°:
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Example of Hebbian learning

Compute the weight vector after the second iteration of Hebbian
learning

Solution First iteration: net' is calculated using the input vector x! and initial weight vec-
tor w'!

Since net > 0, o! will be o'= f(net')= +1



Example of Hebbian learning
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Example of Hebbian learning

Second iteration: ner” is calculated using input vector x> and weight vector w

Me?r2 = w"

Since net < 0, 0* will be 0>=

T

X2:
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Self-Organizing Map (SOM)

SOM is to transform an incoming signal pattern of arbitrary
dimension into one-or two-dimensional discrete map.

SOM was originally invented by Kohonen in the mid 1990's
sometimes referred to as Kohonen Networks

A SOM is a multi-dimensional scaling technique which
constructs an approximation of the probability density
function of some underlying data set and preserves the
topological structure of that data set.

This is done by mapping input vectors, in the data set , to
weight vectors, neurons in the feature map.



Self-Organized Map (SOM)

1 dimension:
10 positions
[ ]

2 dimensions:
100 positions
L ]

3 dimensions:
» 1000 positions!

input layer

input values

Source: Turingfinance.com



Self-Organized Map (SOM)




Kohonen Model

Winning
neuron

Two-dimensional array
‘i of postsynaptic neurons

Bundle of synaptic
connections.

Input



Competitive Learning

A set of neurons are fully connected to the inputs
Neurons compete for the best response to input patterns

A mechanism for this competition should be decided
such as Euclidean distance or Mahalanobis distance

Typically, a winner-takes-all method is used

The idea is one of the neurons will have the maximum response
and therefore only its weights are adjusted



Winner-takes-all

- Winner-take-all algorithm works with single node in a layer of nodes
that responds most strongly to the input pattern.

x1

X2 ]
winner

>

Xm




SOM Algorithm winner takes all Wi

XTS_ O
N e winner
Initialize weights ; P >
lteration Loop / o
Xm

Pattern Loop
Calculate Euclidean distance

D, = z(xi —w;)? forj=1lin
Detelfrznline the winner neuron
min D;
Adjust the weights for the winner neuron only
wij=Wwij + a(x; — wjj)
End Pattern Loop
End Iteration Loop



SOM Algorithm with neighborhood function

vin s . Wij
Inltlal_lze weights T O
Iteration Loop ) i winner
Pattern Loop ] 4 >
Calculate Euclidean distance <
m xm/ Q
D]- =Z(Xi —Wl'j)z fOT'j = 1:7?,
=1
Determine the winner neuron
min D;

Adjust the weights for the winner neuron only
Wij = Wij + bij(xi — Wij)
Where #;is the neighbourhood function

—|lri—cl|

h;; = a(t)e( 202
Where 0 < a(t) < 1is the learning rate parameter o is the
width of the kernel at) = 0.9 (1 — =)
End Pattern Loop

End Iteration Loop

)



Example

Consider the 2-dimensional data in table below

Use two winner-takes-all neurons to classify the data as shown in
figure below

X1 X2
1.0 1.0 %1 O
9.4 6.4
2.5 2.1
8.0 7.7
0.5 2.2 X2 O
7.9 8.4
7.0 7.0
2.8 0.8
1.2 3.0
7.8 6.1

Initialize the neuron weights as WA=[5; 3]and WB =[ 6 ; 8]



Example
Iteration One .. Pattern One
1. Competition:
Calculate the distance between the input pattern and neuronA
Di* = (x1 —wi)? + (x2—wya P
Di*= (1-5)2+ (1-3)2=20
Calculate the distance between the input pattern and neuron B
Dy* = (x1 —w1p)? + (x2— wp)?
D)= (1-6)2+ (1-8)2=74

Compare

D1< D, == winner is neuron A



Example

2. Update Weights

Only weights of the winner neuron are updated

Wa=Wa+a X — Wy)
wa=[3]+0s([]-[5) =[]

Wp = [g] unchanged



Example

Iteration One .. Pattern Two

1. Competition:

Calculate the distance between the input pattern and neuronA
D1* = (x1 —wig) 2 + (x2— wyy)?
Di? = (9.4—3)2+ (6.4 —2Y=112
Calculate the distance between the input pattern and neuron B
Dy* = (x1—wip)?2+ (x2— wap)?
D)= (94—-6)2+ (6.4—-8)2=14

Compare

D, < Di== winner is neuron B



Example

2. Update Weights

Only weights of the winner neuron are updated

Wp=Wp+a (X — Wp)
Wi = [g]+05 ([g.4] = [5]) = 17

Wy = B] unchanged



Example

- |[teration One
- Pattern 3; Competition; Update
- Pattern 4; Competition; Update

- Pattern 10; Competition; Update
- [teration Two
- Pattern 1; Competition; Update

- Pattern 10; Competition; Update
- |lteration Three









Application Example

[ Flow Motion ] S

Vectors
* Competitive layer
Encoding
Trajectories Body features Directions
Novelty Novelty Novelty
detection detection detection

S1 S2



Application Example
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