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Learning Methods:Unsupervised

• Unsupervised or Self- organized 
learning does not  have a teacher 
(i.e. desired  responses are not
available.

• The network is tuned from  input 
data only

• The network weights are  updated 
to find features  within the data and
therefore  does automatic 
classification.
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Hebbian learning

The basic rule is: ‘If a neuron receives 
an input from another neuron and if 
both are highly active 
(mathematically have the same sign), 
the weight between the neurons 
should be strengthened’.

The rule states that if the cross-
product of output and input, or 
correlation term oi xj is positive, this 
results in an increase of weight wji , 
otherwise the weight decreases.

Fire together, wire together



Hebbian learning

The weight update Δ𝑊𝑊 in Hebbian learning becomes

Δwji= η oi xj = η f (neti ) xj

𝑜𝑜𝑖𝑖 = 𝑓𝑓(𝑛𝑛𝑛𝑛𝑡𝑡𝑖𝑖)
𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = ∑𝑤𝑤𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗

Where 
η is the learning rate



Example of Hebbian learning

Assume the neural  
network with a single 
bipolar binary neuron



Example of Hebbian learning

Compute the weight vector after the second iteration of Hebbian 
learning
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Self-Organizing Map(SOM)

• SOM is to transform an incoming signal pattern of arbitrary
dimension into one-or two-dimensional discrete map.

• SOM was originally invented by Kohonen in the mid 1990's
• sometimes referred to as Kohonen Networks

• A SOM is a multi-dimensional scaling technique which  
constructs an approximation of the probability density  
function of some underlying data set and preserves the  
topological structure of that data set.

• This is done by mapping input vectors, in the data set , to  
weight vectors, neurons in the feature map.
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Self-Organized Map(SOM)
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Source: Turingfinance.com



Self-Organized Map(SOM)



Kohonen Model
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Competitive Learning

• A set of neurons are fully connected to the inputs

• Neurons compete for the best response to input patterns

• A mechanism for this competition should be decided
• such as Euclidean distance or Mahalanobis distance

• Typically, a winner-takes-all method is used
• The idea is one of the neurons will have the maximum response  

and therefore only its weights are adjusted
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Winner-takes-all

• Winner-take-all algorithm works with single node in a  layer of nodes 
that responds most strongly to the input  pattern.

•𝒘𝒘𝒊𝒊𝒋𝒋
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SOMAlgorithm winner takes all

Initialize weights
Iteration Loop

Pattern Loop
Calculate Euclidean distance

Determine the winner neuron
𝒎𝒎𝒊𝒊𝒏𝒏 𝑫𝑫𝒋𝒋

Adjust the weights for the winner neuron only
𝒘𝒘𝒊𝒊𝒋𝒋 = 𝒘𝒘𝒊𝒊𝒋𝒋 + 𝜶𝜶(𝒙𝒙𝒊𝒊 − 𝒘𝒘𝒊𝒊𝒋𝒋)

End Pattern Loop
End Iteration Loop
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SOMAlgorithm with neighborhood function
Initialize weights
Iteration Loop

Pattern Loop
Calculate Euclidean distance

Determine the winner neuron
𝒎𝒎𝒊𝒊𝒏𝒏 𝑫𝑫𝒋𝒋

Adjust the weights for the winner neuron only
𝒘𝒘𝒊𝒊𝒋𝒋 = 𝒘𝒘𝒊𝒊𝒋𝒋 + hij(𝒙𝒙𝒊𝒊 − 𝒘𝒘𝒊𝒊𝒋𝒋)
Where hij is the neighbourhood function

Where 0 < 𝛼𝛼 𝑡𝑡 < 1 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜎𝜎 is the 
width of the kernel
End Pattern Loop

End Iteration Loop
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Example

• Consider the 2-dimensional data in table below
• Use two winner-takes-all neurons to classify the data as shown in  

figure below
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X1 X2
1.0 1.0
9.4 6.4
2.5 2.1
8.0 7.7
0.5 2.2
7.9 8.4
7.0 7.0
2.8 0.8
1.2 3.0
7.8 6.1

A

B

x1

x2

Initialize the neuron weights as WA = [ 5 ; 3] and WB = [ 6 ; 8]
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Iteration One .. Pattern One

1. Competition:
Calculate the distance between the input pattern and neuronA

𝐷𝐷1
2 = 𝑥𝑥1  − 𝑤𝑤1𝐴𝐴 2 + 𝑥𝑥2 − 𝑤𝑤2𝐴𝐴 2

𝐷𝐷1
2 = 1 − 5 2 + 1 − 3 2 = 20

Calculate the distance between the input pattern and neuron B

𝐷𝐷2
2 = 𝑥𝑥1  − 𝑤𝑤1𝐵𝐵 2 + 𝑥𝑥2 − 𝑤𝑤2𝐵𝐵 2

𝐷𝐷2
2 = 1 − 6 2 + 1 − 8 2 = 74

Compare
𝐷𝐷1 < 𝐷𝐷2 =⇒ 𝒘𝒘𝒊𝒊𝒏𝒏𝒏𝒏𝒆𝒆𝒓𝒓 𝑖𝑖𝑠𝑠 𝑛𝑛𝑒𝑒𝑢𝑢𝑟𝑟𝑜𝑜𝑛𝑛 𝑨𝑨
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2. Update Weights

Only weights of the winner neuron are updated

𝑊𝑊𝐴𝐴= 𝑊𝑊𝐴𝐴+ 𝛼𝛼 𝑋𝑋 − 𝑊𝑊𝐴𝐴

3𝑊𝑊𝐴𝐴 = 5 + 0.5 1 − 5 3
1 3 = 2

𝑊𝑊𝐵𝐵 = 6
8

unchanged
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𝐷𝐷2
2 =

𝐷𝐷2
2 =

Iteration One .. Pattern Two

1. Competition:
Calculate the distance between the input pattern and neuronA

𝐷𝐷1
2 = 𝑥𝑥1  − 𝑤𝑤1𝐴𝐴 2 + 𝑥𝑥2 − 𝑤𝑤2𝐴𝐴 2

𝐷𝐷1
2 = 9.4 − 3 2 + 6.4 − 2 2 = 112

Calculate the distance between the input pattern and neuron B

𝑥𝑥1 − 𝑤𝑤1𝐵𝐵 2 +

9.4 − 6 2 +

𝑥𝑥2 − 𝑤𝑤2𝐵𝐵 2

6.4 −8 2 = 14

Compare
𝐷𝐷2 < 𝐷𝐷1 =⇒ 𝒘𝒘𝒊𝒊𝒏𝒏𝒏𝒏𝒆𝒆𝒓𝒓 𝑖𝑖𝑠𝑠 𝑛𝑛𝑒𝑒𝑢𝑢𝑟𝑟𝑜𝑜𝑛𝑛 𝐵𝐵
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2. Update Weights

Only weights of the winner neuron are updated

𝑊𝑊𝐵𝐵= 𝑊𝑊𝐵𝐵+ 𝛼𝛼 𝑋𝑋 − 𝑊𝑊𝐵𝐵

8𝑊𝑊𝐵𝐵 = 6 + 0.5 9.4 − 6
6.4 8

= 7.7
7.2

𝑊𝑊𝐴𝐴 = 3
2

unchanged



Example

• Iteration One
• Pattern 3; Competition; Update
• Pattern 4; Competition; Update
• …
• Pattern 10; Competition; Update

• Iteration Two
• Pattern 1; Competition; Update
• …
• Pattern 10; Competition; Update

• Iteration Three
• …
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Application Example
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Application Example
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