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TIME RESPONSE COMPARISON
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Figure 7.1 (a) Discrete system and (b) its continuous-time equivalent



TIME RESPONSE COMPARISON

vz)  GQ@)
r(z)  14+G(2)

where

r(z) = —

z—1
and the z-transform of the plant is given by
| —e™sT

G(s) = :
(5) s2(s + 1)

Expanding by means of partial fractions, we obtain

, 1 1
Gs)=(1—-e"|=—-—+
s2 5 541




TIME RESPONSE COMPARISON

and the z-transform is

] B | [ ]
U(Z):(I—ZI}Z{—E——_—I—_ }

From z-transform tables we obtain

T: < Z
G(m:u—:‘l)[ + ]

z—12 z—1 z—eT

Setting 7 = Is and simplifying gives

0.368z + 0.264
2?2 — 1.3687 + 0.368"
Substituting into (7.1), we obtain the transfer function

v(z)  G(z) 03687+ 0.264

r(z) 14+G(z) z22—27z40.632°

and then using (7.2) gives the output

G(z) =

[ 2(0.368z + 0.264)
y : — - .
| (z —1)z2 — 74 0.632)




TIME RESPONSE COMPARISON

The inverse z-transform can be found by long division: the first several terms are
v(z) =0368z7 ' + 772+ 147277 + 1477 4 1.1527° 409275+ 0.8277 +0.87778
+0.99277 + ...
and the time response is given by
vinT) = 0.3688(f — 1)+ 6(f —2)+ 1.45(f —3) + 1.45(t —4) 4+ 1.156(t — 5)
+0.98(t —6) 4+ 0.86(t —7)+ 0.876(t —8)+....



TIME RESPONSE COMPARISON

From Figure 7.1(b), the equivalent continuous-time system transfer function is

yis) G(s) B I/(s(s 4+ 1)) B ]
r(s) 14+Gs) 14+(/s(s+1) s24s+1

Since r(s) = 1/s, the output becomes

]
s(s24s5 4 1)

yis) =

To find the inverse Laplace transform we can write

] s+ 1 | s + 0.5 0.

t2| tn

V(§)=— — —
s

s245+1 s (s+052-052 (s+052—052

From inverse Laplace transform tables we find that the time response is

y(1) =1 — e " (cos 0.5t + 0.577 sin0.57) .
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TIME DOMAIN SPECIFICATIONS

* The performance of a control system 1s usually measured 1n terms of
1ts response to a step nput.

* The step mnput 1s used because it 1s easy to generate and gives the
system a nonzero steady-state condition, which can be measured.

Most commonly used| time domain performance measures refer to a second-order system
with the transfer function:

v(s) w?

r(s)  s*42¢wps + w3’

where w, is the undamped natural frequency of the system and ¢ is the damping ratio of the
system.



TIME DOMAIN SPECIFICATIONS

Based on this figure, the following performance parameters are
usually defined: maximum overshoot; peak time; rise time;

settling time; and steady-state error.

e The maximum overshoot, M, is the peak value of the
response curve measured from unity.
e This parameter is usually quoted as a percentage.

L

e The amount of overshoot depends on the damping ratio and 0 T Tp T,
directly indicates the relative stability of the system.

Figure 7.3 Second-order system unit step response
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where

Is the damped natural frequency.

Figure 7.4 Variation of overshoot with damping ratio



TIME DOMAIN SPECIFICATIONS

The peak time, T T 1s defined as the time required for the
response to reach the first peak of the overshoot. y(t)
The system 1s more responsive when the peak time 1s
smaller, but this gives rise to a higher overshoot.

The rise time, 7., is the time required for the response to go
from 0 % to 100 % of its final value.

It is a measure of the responsiveness of a system, and smaller
rise times make the system more responsive.

L J

0 T,

Figure 7.3

where

T, T,

Second-order system unit step response



TIME DOMAIN SPECIFICATIONS

* The settling time, 7, , is the time required for the response N
curve to reach and stay within a range about the final pr
value. A value of 2-5% 1is usually used in performance 1
specifications.
0 LT T, "

p

Figure 7.3 Second-order system unit step response

The settling time 1s usually specified for a 2 % or 5 % tolerance band, and is given by

Iy, = — (for 2% settling time),

T, = — (for 5% settling time).



TIME DOMAIN SPECIFICATIONS

* The steady-state error, £, 1s the error between the system

response and the reference input value (unity) when the |

system reaches its steady-state value.

* A small steady-state error is a requirement in most control
systems.

* In some control systems, such as position control, it is one

of the requirements to have no steady-state error. 0 T, T,

Figure 7.3 Second-order system unit step response

The steady-state error can be found by using the final value theorem, i1.e. if the Laplace transform
of the output response is y(s), then the final value (steady-state value) is given by

l[im sv(s),

s—0

and the steady-state error when a unit step input is applied can be found from

Eg=1—1lims v(s).

§—0



TIME DOMAIN SPECIFICATIONS: Example

Determine the performance parameters of the system given

yis) I
r(s) s24+s+1

Solution

Comparing this system with the standard second-order system transffer function

y(s) w?
r(s) s 420w,s +w?

we find that £ = 0.5 and w, = 1 rad/s. Thus, the damped natural frequency is

wy = w21 — 2 = 0.866rad/s.

The peak overshoot is

M, = e~ CT/N1=8) — .16

P
or 16 %. The peak time is

T L
T,=— =3.627s



IME DOMAIN SPECIFICATIONS: Example
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Finally, the steady state error is
I
Es=1—-—lmsvis)=1—lm s =0
* s(s2 45+ 1)

s—=0 - s—0




MAPPING THE s-PLANE INTO THE z-PLANE

* The pole locations of a closed-loop continuous-time system in the s-plane
determine the behaviour and stability of the system, and we can shape the
response of a system by positioning its poles in the s-plane. It 1s desirable to do the
same for the sampled data systems.



MAPPING THE s-PLANE INTO THE z-PLANE

First of all, consider the mapping of the left-hand side of the s-plane into the z-plane. Let
s = 0 + jw describe a point in the s-plane. Then, along the jw axis,
- — T — T pieT
But 0 = 0 so we have
z=2e/"T =coswT + jsinoT = 1/oT.

Hence, the pole locations on the imaginary axis in the s-plane are mapped onto the unit circle
in the z-plane. As w changes along the imaginary axis in the s-plane, the angle of the poles on
the unit circle in the z-plane changes.



MAPPING THE s-PLANE INTO THE z-PLANE

If w is kept constant and ois increased in the left-hand s-plane, the pole locations in the
z-plane move towards the origin, away from the unit circle. Similarly, if o is decreased in
the left-hand s-plane, the pole locations in the z-plane move away from the origin in the
z-plane. Hence, the entire left-hand s-plane is mapped into the interior of the unit circle in
the z-plane. Similarly, the right-hand s-plane is mapped into the exterior of the unit circle in
the z-plane. As far as the system stability 1s concerned, a sampled data system will be stable
if the closed-loop poles (or the zeros of the characteristic equation) lie within the unit circle.



MAPPING THE s-PLANE INTO THE z-PLANE
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Figure 7.5 Mapping the left-hand s-plane into the z-plane



MAPPING THE s-PLANE INTO THE z-PLANE

As shown in Figure 7.6, lines of constant ¢ in the s-plane are mapped into circles in the
z-plane with radius e’ . If the line is on the left-hand side of the s-plane then the radius of
the circle in the z-plane is less than 1. If on the other hand the line is on the right-hand side of
the s-plane then the radius of the circle in the z-plane is greater than 1. Figure 7.7 shows the
corresponding pole locations between the s-plane and the z-plane.



MAPPING THE s-PLANE INTO THE z-PLANE

As shown in Figure 7.6, lines of constant o in the s-plane are mapped into circles in the
z-plane with radius €’ . If the line is on the left-hand side of the s-plane then the radius of

the circle in the z-plane is less than 1. If on the other hand the line is on the right-hand side of
the s-plane then the radius of the circle in the z-plane is greater than 1. Figure 7.7 shows the
corresponding pole locations between the s-plane and the z-plane.
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Figure 7.6 Mapping the lines of constant o



MAPPING THE s-PLANE INTO THE z-PLANE
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