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Recurrent NeuralNetworks

• A recurrent network is  
obtained from the  
feedforward network by 
adding a connecting the  
neuron’s output to their  
inputs.

• Recurrent networks are  
also called feedback  
networks
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Delay



ElmanNetworks

• Elman networks are three-layer backpropagation  
networks with the addition of a feedback connection  
from the output of the hidden layer to its input.

• The Elman architecture have an extra layers of neurons  
that copy the current activations in the hidden-layer  
neurons, and after delaying these values for one time  
unit, feed them back as additional inputs into the hidden  
layer neurons.
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ElmanNetworks

• The Elman network will  
therefore have three  
layers:
1. Input layer that  

consists of two  
different groups of  
neurons: external  
inputs and internal  
inputs

2. Hidden layer
3. Output layer
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Elman NetworkEquations
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𝒁𝒁 = 𝒇𝒇(𝑾𝑾𝑻𝑻𝒀𝒀 + 𝑾𝑾𝒐𝒐)

𝒀𝒀 = 𝒇𝒇(𝑽𝑽𝑻𝑻𝑿𝑿 + 𝑽𝑽𝒐𝒐+ 𝑨𝑨𝑻𝑻𝒀𝒀)

Y is a function of Y ??
But there is a delay! And that is why we use ‘t’ to represent the time sequence

𝒀𝒀(𝒕𝒕) = 𝒇𝒇(𝑽𝑽𝑻𝑻𝑿𝑿 + 𝑽𝑽𝒐𝒐 + 𝑨𝑨𝑻𝑻𝒀𝒀(𝒕𝒕 − 𝟏𝟏))



JordanNetworks

• Jordan networks are 
three-layer networks,  
with the main feedback 
connections taken 
from the output layer  
to the input layer.

• The Jordan Network  
can be trained using  
the standard BP  
algorithm
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Jordan NetworkEquations
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𝒁𝒁 = 𝒇𝒇(𝑾𝑾𝑻𝑻𝒀𝒀 + 𝑾𝑾𝒐𝒐)

𝒀𝒀 = 𝒇𝒇(𝑽𝑽𝑻𝑻𝑿𝑿 + 𝑽𝑽𝒐𝒐+ 𝑪𝑪𝑻𝑻𝒁𝒁)



Use BP to update the weights

• 𝒁𝒁 = 𝒇𝒇(𝑾𝑾𝑻𝑻𝒀𝒀 + 𝑾𝑾𝒐𝒐)

• Step One: Output Weights (same as regular BP equations for
feedforward)

• 𝜹𝜹𝒌𝒌 = 𝒛𝒛𝒌𝒌 − 𝒅𝒅𝒌𝒌 𝒛𝒛′𝒌𝒌

• 𝒘𝒘𝒋𝒋𝒌𝒌 = 𝒘𝒘𝒋𝒋𝒌𝒌 −𝜶𝜶𝜹𝜹𝒌𝒌𝒚𝒚𝒋𝒋
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𝑬𝑬 =
𝟏𝟏
𝟐𝟐
�
𝒌𝒌=𝟏𝟏

𝒏𝒏

𝒛𝒛𝒌𝒌 − 𝒅𝒅𝒌𝒌 𝟐𝟐



Use BP to update the weights
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𝟏𝟏
𝑬𝑬 = 𝟐𝟐 (𝒛𝒛𝒌𝒌− 𝒅𝒅𝒌𝒌)2 𝒁𝒁 = 𝒇𝒇(𝑾𝑾𝑻𝑻𝒀𝒀 + 𝑾𝑾𝒐𝒐)

𝒀𝒀 = 𝒇𝒇(𝑽𝑽𝑻𝑻𝑿𝑿 + 𝑽𝑽𝒐𝒐+ 𝑪𝑪𝑻𝑻𝒁𝒁)

𝝏𝝏𝑬𝑬
𝝏𝝏𝒗𝒗𝒊𝒊𝒋𝒋

=
𝝏𝝏𝑬𝑬 𝝏𝝏𝒛𝒛𝒌𝒌
𝝏𝝏𝒛𝒛𝒌𝒌 𝝏𝝏𝒚𝒚𝒋𝒋 𝝏𝝏𝒗𝒗𝒊𝒊𝒋𝒋

𝝏𝝏𝒚𝒚𝒋𝒋

𝜹𝜹𝒋𝒋= 𝒚𝒚′𝒋𝒋 (𝜹𝜹𝒌𝒌𝒘𝒘𝒋𝒋𝒌𝒌)

𝒗𝒗𝒊𝒊𝒋𝒋= 𝒗𝒗𝒊𝒊𝒋𝒋−𝜶𝜶𝜹𝜹𝒋𝒋𝒙𝒙𝒊𝒊

Step Two: Hidden Weights from inputs (same as regular BP feedforward)

𝝏𝝏𝑬𝑬
𝝏𝝏𝒗𝒗𝒊𝒊𝒋𝒋

=        𝜹𝜹𝒌𝒌𝒘𝒘𝒋𝒋𝒌𝒌 𝒚𝒚′𝒋𝒋𝒙𝒙𝒊𝒊

where

𝝏𝝏𝑬𝑬
𝝏𝝏𝒄𝒄𝒌𝒌𝒋𝒋

𝝏𝝏𝑬𝑬 𝝏𝝏𝒛𝒛𝒌𝒌
𝝏𝝏𝒛𝒛𝒌𝒌 𝝏𝝏𝒚𝒚𝒋𝒋

𝝏𝝏𝒚𝒚𝒋𝒋
𝝏𝝏𝒄𝒄𝒌𝒌𝒋𝒋

𝒄𝒄𝒌𝒌𝒋𝒋= 𝒄𝒄𝒌𝒌𝒋𝒋−𝜶𝜶𝜹𝜹𝒋𝒋𝒛𝒛𝒌𝒌

where

𝜹𝜹𝒋𝒋= 𝒚𝒚′𝒋𝒋 𝜹𝜹𝒌𝒌𝒘𝒘𝒋𝒋𝒌𝒌

Step Three: Hidden Weights from output feedback

𝝏𝝏𝒄𝒄𝒌𝒌𝒋𝒋
𝝏𝝏𝑬𝑬 = 𝜹𝜹 𝒘𝒘𝒌𝒌 𝒋𝒋𝒌𝒌 𝒚𝒚′ 𝒛𝒛𝒋𝒋 𝒌𝒌
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NARX

The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent 
dynamic network
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End
Thank you
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