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Operations on fuzzy sets

Operations on Fuzzy Sets

The membership function is the main component defining the basic fuzzy set operations.

Zadeh and other researchers have given additional and alternative definitions for set-theoretic
operations.
a-cut of a fuzzy set: The «-cut of a fuzzy set A, denoted A,, is a subset of X consisting of a-cut
all the elements in X defined by s
Ay ={x |4, (x) > aand x € X} (2.11)
This means that the fuzzy set A, contains all elements with a membership of a € [0, 1] and >

higher, called the a-cut of the membership function. The «-cut of a fuzzy set A is shown in a b c x
Figure 2.12. At a resolution level of «, it will have support of A,. The higher the value of «,

the higher the confidence in the parameter. Figure 2.12 a-cut of the membership function



Operations on fuzzy sets

Example 2.3 Let A be a fuzzy set in the universe of discourse X and (x;, x2, x3,x4) € X
defined as follows:

A =1{0.3/xy,1/x2,0.5/x3,0.9/x4, 1/x5}
Ay fora > 0.51s

Ag=05 = {1/x2,0.9/x4, 1/x5}



Operations on fuzzy sets

Union of fuzzy sets: The union of two fuzzy sets A and B with membership functions (4
and ppg, respectively, 1s a fuzzy set C, denoted C = A U B, with the membership function

ic. There are two definitions for the union operation: the max membership function and the
product rule, as defined in Equations (2.12) and (2.13):

e(x) =max [pa(x), wg(x)] (2.12)
pe(x) = palx) + pp(x) — pa(x)uwp(x) (2.13)

where x 1s an element in the universe of discourse X.



Operations on fuzzy sets

Example 2.4 Let A and B be two fuzzy sets in the universe of discourse X and (xy,
X5, X3, X4) € X defined as follows:

A ={0/x1 + 1/x2+0.7/x3 + 0.4/xs + 0.2 /x5 + 0/x6}
B ={0/x; +0.4/xy +0.7/x3 4+ 0.8/x4 + 1/x5 + 0/x¢)

The union of fuzzy sets A and B using the max membership function 1s
Chax = AUB={0/x1 +1/x24+0.7/x3 +0.8/x4 + 1 /x5 + 0/x6}

where po(x;) is calculated from max [p(x;), pg(x;)] for i = 1,2,3,...,6. Alternatively,
using the product rule it 1s

Cprod = AU B = {0/x; + 1/x5 4+ 0.91/x3 + 0.88/x4 4 1/x5 + 0/x6)

where pc(x;) is calculated using [ a(x;) + pp(x;) — pa(x;)* pp(x;)] fori =1,2,3,...,6.
The union operation of fuzzy sets A and B is shown in Figure 2.13.



Operations on fuzzy sets

Figure 2.13 Union of fuzzy sets A and B using max operation



Operations on fuzzy sets

Intersection of fuzzy sets: The intersection of two fuzzy sets A and B with membership
functions s and pp, respectively, 1s a fuzzy set C, denoted C = A N B, with membership
function pe defined using the min membership function or the product rule as

pe(x) = min[pa(x), pp(x)] (2.14)
pe(x) = pa(x)™ pp(x) (2.15)

Example 2.5 Let A and B be two fuzzy sets in the universe of discourse X and
(X1, X2, X3, X4) € X defined as in the previous example.
The intersection of fuzzy sets A and B using the min membership function is

Coin=ANB={0/x;4+04/x2 +0.7/x3 +0.4/x4 + 0.2/x5 + 0/x6}

where [uo(x;) 1s calculated from pe(x) = min[pa(x), pg(x)] fori =1,2,3,...,6. Alterna-
tively, using the product rule it is

Cprod = AN B = {0/x; + 0.4/x; + 0.49/x3 + 0.32/x4 + 0.2/x5 + 0/x6)

where pe(x;) 1s calculated from pe(x) = pa(x)* pp(x) fori =1,2,3,...,6.



Operations on fuzzy sets

Figure 2.14 Intersection of fuzzy sets A and B using the min operation



Operations on fuzzy sets

Complement of fuzzy set: The complement of a fuzzy set A with membership function 4 1s
a fuzzy set, denoted ~A, with membership function p..4 defined as

Hoa(X) =1 — pa(x) (2.16)

Example 2.6 Let A be a fuzzy set in the universe of discourse X and (xy, x2, X3, X4,
Xs, Xg, X7, Xg) € X defined as follows:

A ={1/x1 +1/x240.9/x3 + 0.8/xs + 0.7/x5 + 0.3 /x6 + 0.1/x7 + 0/x5)

The complement of fuzzy set A 1s ~A:

~A=1{0/x; +0/x3 4+ 0.1/x3 + 0.2/x4 + 0.3/x5 + 0.7/x¢ + 0.9/x7 + 1/x5}

where pt~a(x) is calculated from [1 — pa(x)] fori =1,2,3,...,8. Figure 2.15 Complement of fuzzy set A
The complement operation of fuzzy set A is shown in Figure 2.15.



Operations on fuzzy sets

Fuzzy subsets or containment: Let A and B be two fuzzy sets with membership functions pt 4
and p g, respectively. A 1s a subset of B (or A is contained in B), written A C B, if and only if

g < g Vx,x € X (2.17)

Equality of fuzzy sets: Two fuzzy sets A and B with membership functions @4 and g,
respectively are equal, written A = B, if and only 1f

Uy =g Vx,x € X (2.18)

Example 2.7 Let A and B be two fuzzy sets in the universe of discourse X and
(x1, X2, x3, x4) € X defined as follows:

A ={0/x1 + 1/x2 +0.7/x3 + 0.4/xs 4+ 0.2/x5 + 0/x6)
B =1{0/x, + 1/x5 4+ 0.7/x3 + 0.4/x4 + 0.2/x5 + 0/x4)

All the membership values of A are equal to those of B, i.e., uy = jup, therefore A = B.

Null (or empty) fuzzy set: A fuzzy set is null (or empty, denoted @) if and only if its
membership function Vx € X (for all elements in X) is identically zero on X. This is defined as

;,L¢,(.1') = {x |,u¢,(,t') = 0 and Vx € X} (2.19)
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Operations on fuzzy sets

Properties of fuzzy sets: Assume A, B and C are fuzzy sets of X. The following properties
hold for union, intersection and fuzzy subsets.

(1) Commutativity

AUB=BUA
ANB=BNA

(i1) Idempotency
AUA=A
ANB=BNA

(111) Associativity
AUBUC)=(AUB)UC=AUBUC
ANBNC)=(AnB)NC=ANBNC

(1v) Distributivity
AUMBNC)=(AUB)N(AUC)
ANBUC)=(ANB)UANC)

AU = A
AND =0
AUX =X

ANX =A



Operations on fuzzy sets

(v) Transitivity

fAcCc BthenB=AUBandA=ANS~EH
[fAcCcBandB c CthenA Cc C

The following properties hold for complements of fuzzy subsets.

(vi) De Morgan’s Law

AUB=ANB
ANB=AURB

A significant feature of fuzzy set that distinguishes them from classical sets is that
ANG #£ QGand AUA #£ X.



Linguistic variables

A linguistic variable is a variable whose values are words or sentences, used as labels of fuzzy
subsets (Zadeh, 1975a,b, 1976a). Such linguistic variables serve as a means of approximate
characterization of systems which cannot be described precisely by numerical values or other
traditional quantitative terms. For example, speed is a linguistic variable if its values are slow,
medium, fast, not slow, very fast, not very slow, etc. In this case, fast is a linguistic value of
speed and is imprecise compared with an exact numeric value such as ‘speed is 77 mph’. The
relation between a numerical variable s = 77 and the linguistic variables slow, medium and
fast is illustrated graphically in Figure 2.16.

In general, a linguistic variable is characterized by a quintuple {X, T, U, G, M}, where X
is the name of the variable (e.g., Speed), T denotes the term set of X (i.e., the set of names
of linguistic labels of X over a universe of discourse U': slow, medium, fast, etc.), G is the
syntactic rule or grammar for generating names and M is the semantic rule for associating
with each X its meaning, M(X) C U (Zadeh, 1975a).



Linguistic variables

T'(Speed) = {slow, medium, fast}

Medium Fast

0.5

30 45 60 75 1 90
s=77

Figure 2.16 Relation between linguistic and numerical variables



Features of Linguistic Variables

Theoretically, the term set 7(X) 1s infinite but in practical applications, T(X) is defined with a
small number of terms so that each element of 7 ( X') defines a mapping between each element
and the function M (X), which associates a meaning with each term in the term set. Let the term
set of the linguistic variable Speed be {slow, medium, fast} within the universe of discourse
U = [0, 120]. The term set can be expressed as

T (Speed) = {slow, medium, fast}



Features of Linguistic Variables

The semantic rule of linguistic variables can be expressed using context-free grammar. For
example

T = {slow, very slow, very very slow, ...}
Using context-free grammar the above expression can be written as

T — slow

I' — veryT

Here, ‘very’ is called a linguistic hedge, which is used to derive new linguistic variables.
Linguistic hedges will be discussed further in the next section.

A linguistic variable can be a word or sentence and such natural language expressions
are fuzzy, e.g.., Slow OR Medium, Medium AND Fast. Figure 2.17 shows three MFs: Slow,
Medium and Fast.

The linguistic variable ‘Slow OR Medium’ is shown graphically in Figure 2.18. It is the
shaded area representing the union of the membership functions *Slow or Medium’.



Features of Linguistic Variables

His) &
Slow Medium Fast

5 10 15 20 25 30 s (s) A

Figure 2.17 Three fuzzy sets for speed — Slow, Medium and Fast | P —————=

5 1O

Figure 2.18 Expression for ‘Slow OR Medium’



Features of Linguistic Variables

The linguistic variable “Medium AND Fast™ is shown graphically in Figure 2.19. It is the
shaded area representing the intersection of the membership functions Medium AND Fast.

In the above examples, OR and AND are connectives, which play an important role in the
description of linguistic variables. It can be seen from Figures 2.18 and 2.19 that they are used
to derive new linguistic variables from the term sets.

Figure 2.19 Expression for ‘Medium AND Fast’



Linguistic Hedges

The purpose of the hedges is to generate a larger set of values for a linguistic variable
from a small collection of primary terms. Hedges are realized on primary terms through the
processes

e Intensification or concentration,
e Dilation and
e Fuzzification.

This can be represented as a quadruple {H, M, T, C}, where H is the set of hedges, M is
the marker, T is the set of primary terms (e.g., slow, medium, fast, etc.) and C is the set of
connectives. Parentheses are used as markers in the definition of linguistic variables to separate
the term set from the hedge, e.g., Very (Small). Figure 2.20 depicts the format of the use of
the different term sets, hedges and connectives for defining linguistic variables.

For example, Big but Not Very (Big). Here ‘Big’ is a primary term set, ‘but’ is a connective
(which means AND in this case) and “Very’ 1s a hedge. ‘Not™ 1s a complement operation on
the term set. Parentheses ‘()" are used as a marker.



Linguistic Hedges

Example 2.8 The hedge *Very’ i1s a concentration (or intensification) operation and per-
formed by squaring the membership values of the primary fuzzy set. The operation is shown
for two primary fuzzy sets Small and U in the example below.

Very (Small) = Small* = [ptsman]*
Very (Very (U)) = (Very ([ng))? = ([nv]?)? = [ne]?

Hedges, e.g. Markers, e.g. Pr;marsynirl]lns, Connectives, e.g.
VERY, MORE or Parenthesis & 3 AND, OR, NOT
LESS Medium, Big
Hedges H Markers M Termset T Connectives C

Linguistic Variable

Figure 2.20 Linguistic variables and hedges



Linguistic Hedges

Example 2.9  Consider the fuzzy set A of short pencils defined by

0.20 0.5 | ] 0.9
A= + + + +
P1 P2 P3 Pa Ps

Then the fuzzy set for very short pencils can be expressed by the use of a hedge on the fuzzy
set A:

* B ) 0.04 0.25 | ] 0.81
Very (A) = [pal” = + +—+—+
P1 P2 P3 P4 Ps

The linguistic hedge ‘More or less’ is a dilation operation defined as More or less (A) = A/
The fuzzy set for more or less short pencils can be expressed by the following:

0.45 0.71 I 1 0.95
More or less (A) = [pna]'? = i + 4+ — + + }
P1 P2 P3  Pa Ps



Linguistic Hedges

The application of the linguistic hedges “Very™ and ‘More or less’ is demonstrated through the
concentration (or intensification) and dilation process as shown in Figure 2.21.

uis) &
1

2

Nice

VEI‘}F(NiCE)ZNiCEE
(Intensification)

-

More or less (Nice) = Nice
(Dilation)

Figure 2.21 Dilation and concentration (or intensification)



Linguistic Hedges

Table 2.1 Hedges and their meaning

Hedge

Meaning

About, around, near, roughly
Above, more than

Almost, definitely, precisely
Below, less than

Generally, usually
Neighbouring, close to

Not

Quite, rather, somewhat
Very, extremely

Approximates a scalar
Restricts a fuzzy region
Contrasts intensification
Restricts a fuzzy region
Contrasts diffusion
Approximates narrowly
Negation or complement
Dilutes a fuzzy region
Intensifies a fuzzy region




Linguistic Hedges

A linguistic variable can be used with more than one hedge, for example

Almost very fast but generally below 100 km/hr.
Close to 100 m but not very high.
Not more than about zero.
‘But’ is a connective here which is equivalent to AND. The equivalent versions of the above
linguistic variables with markers can be expressed as
Almost (Very (Fast)) AND Generally (below 100 km/hr).
Close (100 m) AND Not (Very (High)).

Not (More than (About zero)).



Linguistic Hedges

The operation of multiple hedges can result in the same primary fuzzy set. For example, the
operation of the hedges ‘More or less very nice’ is represented by the following expression. It
can be seen that the operation of the hedges on the primary term (fuzzy) set ‘Nice’ resulted in
the same primary fuzzy set:

More or less (Very (Nice)) = More or less (Nice?) = (Nice?)!/? = Nice

Some widely used hedges and their meanings are given in Table 2.1.

Linguistic variables and hedges allow us to construct mathematical models for expressions
of natural language. These models can then be used to write process rules and computer
programs and simulate real-world processes and behaviour.



Fuzzy Relations

The concept of a relation has a natural extension to fuzzy sets and plays an important role in

the theory of such sets and their applications. A fuzzy relation R from the fuzzy set 4 in X to the fuzzy set Bin Yis a
fuzzy set defined by the Cartesian product AxB in the Cartesian product space XxY. R is characterized by the
membership function expressing various degrees of strength of relations:

R=AxB= ZMR(L v)/(x,v) = Z min (L a(x), g(v)) (2.20)

R=AxB= Zﬁﬁ(r, V)/(x,y) = ZH‘A[-’i']* 1p(y) (2.21)

In Equations (2.20) and (2.21) the sum does not mean a mathematical summation operation,
it means all possible combinations of all elements.

R 1is also called the relational matrix. The Cartesian product is implemented in the same
fashion, as is the cross product of two vectors. For example, fuzzy set A with 4 elements
(a column vector of dimension 4x1) and fuzzy set B with 5 elements (a row vector of
dimension 1 x3) will provide the resulting fuzzy relation R which is represented by a matrix
of dimension 4 x3.



Fuzzy Relations

Example 2.10 Let A and B be two fuzzy sets defined by

{1/1 4+0.8/240.6/3 +0.5/4)

A
B={05/1+1/2+0.3/3+0/4)

The fuzzy relation (i.e.. the Cartesian product of A and B using the min operation) will be

{1,.5y {1,1} {1,.3} {1,0} 7 0.5 1 03 07
8,.5 8, 1 8, .3 8,0 0.5 08 03 0
ReAxBo | 155 (81 (8.3 (8,00 _
{.6,.5} {.6,1} {.6,.3} {.6,0} 0.5 06 03 0
| {.5,.5) {5, 1} {.5,.3} {.5,0}] | 0.5 05 03 0]
The fuzzy relation using the product operation will be
- {1,.5}  {I,1} {1,.3} {1,0} 7 0.5 ] 0.3 07
8,.5 8, 1 8, .2 8,0 04 08 024 0
A p | (B (81 (8.3) (8.0} ] _
{.6,.5} {.6,1} {.6,.3} {.6,0} 03 0.6 0.18 0
| {.5,.5) {.5,1} [.5,.3} {.5,0} | 0.25 05 0.15 0]




Compositional Rule of Inference

If R is afuzzy relation in X x Y and A 1s a fuzzy set in X then the fuzzy set B in Y is given by

B=AoR (2.22)

B is inferred from A using the relation matrix R which defines the mapping between X and Y
and the operation *°’ is defined as the max/min operation.



Compositional Rule of Inference

Example 2.11 Let A be a fuzzy set defined by

A ={0.9/1 +0.4/2 + 0/3}

with the fuzzy relation R given by the following relational matrix:

R=AxB=

1 0.8 0.1]
0.8 06 0.3

0.6 03 0.1

Then the fuzzy output B in Y using the max/min operation will be

|

0.9

1

04 O

)

it

1 0.8 0.1]
]e 0.8 0.6 0.3

3 |
0.6 03 0.1 ]




Compositional Rule of Inference

(0.9,1} {0.9,0.8} 1{0.9,0.1)
B=|{04,08 {0406} {04,0.3)
(0,0.6)  {0,03}  {0,0.1}

Taking the minimum values row-wise, we obtain

(0.9 0.8 0.17
B=|04 04 03
0 0 0 ]

Taking the maximum values column-wise, we obtain the fuzzy set B from the compositional
relation:

B=[09 08 03]



Fuzzy If=Then Rules

Fuzzy sets and their operations are the subjects and verbs of fuzzy logic. [f=Then rule statements
are used to formulate the conditional statements that comprise fuzzy logic. A single fuzzy If—
Then rule assumes the form

If <fuzzy proposition > Then < fuzzy proposition > (2.23)

For example,
If <xisA;> Then <yis B>
where A; and B, are linguistic variables defined by fuzzy sets on the ranges (i.e.. the universe

of discourse) X and Y, respectively. The If part of the rule “x is A;’ 1s called the antecedent or
premise and the Then part of the rule “y is B,’ is called the consequent. In other words, the

conditional statement can be expressed in mathematical form:

It Ay Then BorA; — B, (2.24)



Fuzzy If=Then Rules

Example 2.12 The speed and pressure of a steam engine can be expressed with the following

linguistic conditional statement:

If Speed is Slow Then Pressure should be High

Graphically, this statement is represented in Figure 2.22.

nix) A Ay =slow A, = fast ) A

| +

I

—>

x = speed

By =low B = high

>

V= pressure

Figure 2.22 If-Then rule



Rule Forms

In general, three forms exist for any linguistic variables:

(1) Assignment statement
e.g., x 1s not large AND not very small.
(11) Conditional statement
e.g.. IF x 1s very big THEN vy 1s medium.
(111) Unconditional statement
e.g., set pressure high.



Compound Rules

A linguistic statement expressed by a human might involve compound rule structures. By
using basic properties and operations defined for fuzzy sets, any compound rule structure may
be decomposed and reduced to a number of simple canonical rules.

Conjunctive antecedents: A multiple conjunctive antecedent can have the following
form:

IFxisA; ANDxisA,...ANDxis A, THEN yis By (2.25)
Equation (2.25) can be rewritten as
I[IFxis Ag THEN yis Bg (2.26)

where As = Aj N AN AsN---N A, and Ag is expressed by means of a membership function
based on the definition of fuzzy intersection operation as

Pag(x) =min [, (X), fa,(x), ..., pa,(x)] (2.27)



Compound Rules

Disjunctive antecedents: Similarly, a multiple disjunctive antecedent can have the following
form:

[FxisA{ORxis A, ... ORxis A, THEN vis By (2.28)
Equation (2.28) can be rewritten as
[Fxis As THEN vis Bg (2.29)

where Ag = A UA,UA;U---U A, and Agisexpressed by means of amembership function
based on the definition of fuzzy union operation as

ag(X) = max [ﬁal(-f), LA, (X), ..., ,lba,,(«‘l')] (2.30)



Aggregation of Rules

Most rule-based systems have more than one rule. The process of obtaining the overall
consequent from the individual consequents contributed by each rule is the aggregation of
rules. In the case of a system of rules that must be jointly satisfied, the rules are connected
by AND connectives. The aggregated output y is found by fuzzy intersection of the entire
individual rule consequent v;, where i = 1,2,3,...,r:

y = v, AND y, AND ---ANDy, (2.31)

or

}! — ."'hl M _1..*2 M --- _1,..}

The output is defined by means of a membership function based on the definition of fuzzy
intersection operation as

y(v) = min [y, (¥), Ly, (¥), - .., iy, ()] fory € ¥ (2.32)



Aggregation of Rules

For the case of a disjunctive system of rules where at least one rule must be satisfied, the rules
are connected by OR connectives. The aggregated output y is found by fuzzy union of all the
individual rule consequents y;, wherei = 1,2,3,...,r:

v=y1 OR vy, OR ---OR v, (2.33)

or

y=yuUyu---Uy,

The output 1s defined by means of a membership function based on the definition of fuzzy
union operation as

My (y) = max [,u.}.] (V)s Ry, (V) - .o ,u},r(_x-‘)] foryveYt (2.34)



Aggregation of Rules

Example 2.13  Let us consider a fuzzy system with two inputs x; and x; (antecedents) and
a single output y (consequent). Inputs x; and x, have three linguistic variables small, medium
and big with a triangular membership function. Output y has two linguistic variables small and
big with a triangular membership function as shown in Figure 2.23. The rule base consists of
the following two rules:

Rule 1: IF x; 1s small AND x, is medium THEN vy is big
Rule 2: IF x; 1s medium AND x; is big THEN v 1s small

Figure 2.23 Max/min inference method



Aggregation of Rules

The inputs x; = 3.89 and x, = 5.58 are crisp values for which the membership values
(i(x1) and pg(xz) (kK denotes the MFs small, medium or big) are calculated for triangular
membership functions. The aggregated outputs for r rules are given by

rl: Mmg (.‘r'?) = max [min Lﬂsmaﬂ (3-"1) s medium (‘-ZJJJ

rl2: Hsmall (V) = max Lmin [Mmedimu (3-1) ’ au'big (TZ)JJ

In this example, r = 1, 2. The minimum membership values of | tisman (X1), Umedium (X2)]
and L[Lmﬂﬂum (X1), Wpig (.rg)J for the antecedents are calculated and propagate through to
the consequent part. This operation is shown in Figure 2.23(a). The membership func-
tion for the consequent of each rule is then truncated by taking the maximum values, i.e.
max |_ﬁ1i[1 Lﬂ.rmaff (.T] ) Mmedium (3-2)“ and max [min Lﬁmedium (xlj d P'Jb.:'g (}-ZJJJ are Cﬂmpme{i,
which is shown in Figure 2.23(b). The truncated membership functions for each rule, i.e.
Mpig (V) and frgyqy (v) are aggregated using the graphical equivalent of either conjunctive or
disjunctive rules. The aggregation operation max results in an aggregated membership func-
tion comprising the outer envelope of the individual truncated membership forms from each
rule. This operation is shown in Figure 2.23(c).

It has been demonstrated in Figure 2.23 that any numeric value (or crisp value) has to be
converted into a fuzzy input and then a conclusion can be drawn using the rule of inference
on consequent fuzzy sets. There are three distinct steps in the process. They are described in
the following sections.



Aggregation of Rules

small small

x;= 3.89 ¥=5.58

min|” s (x 1)ar My (x 2)J i

Figure 2.23 Max/min inference method



Fuzzification

The process that allows converting a numeric value (or crisp value) into a fuzzy input is called
fuzzification. There are two methods of fuzzification.

e Singleton fuzzification: This maps a real value x; € X into a fuzzy singleton Ay, which has
membership value 1 at x = x; and O at all other points in X. This is expressed as

1 if x =ux

Ka, (x) = (2.35)

0 otherwise

Singleton fuzzification greatly simplifies computation but is generally used in implementa-

tions where there 1s no noise. There 1s no widespread use of singleton fuzzification in fuzzy
systems and applications.



Fuzzification

e A, isfuzzy: This maps a real x; € X into a fuzzy set A, in X described by a membership
function: 10, (X) A
1

iuA] (‘rj )

| if x = x; _ 1y (x;)
Ha, (X) = (2.36)
: [0, 1] decreases from 1 as x moves from x;

a3 (X7

In other words, fuzzification actually provides a membership grade of a real (or crisp) value

x; € X as its belongingness to a fuzzy set A,,. The fuzzy set can be described by various
’ Figure 2.24 Fuzzification in different types of MFs

membership functions discussed in Section 2.4. Figure 2.24 shows the fuzzification of x; € X
using three different types of membership functions: trapezoidal (A;), triangular (A,) and
Gaussian (A3). It demonstrates that x = x; € X has a different fuzzified value, i.e. membership
grade, depending on the type (i.e., shape) of the membership function. The membership grades
are [, (x;) for trapezoidal MF, i 4,(x;) for triangular MF and g 4,(x;) for Gaussian MF,



Fuzzification

Example 2.14 Let A be a fuzzy set defined by the bell-shaped MF (with centre m = 5,
width o = | and shape parameter ¢ = 1 in Equation (2.6)) as follows:

|
,U:'A(.r] — % 2

pa(xi) = T 0.5
L+ |

It is obvious that the shape of the MF plays an important role in fuzzification and in any
subsequent process. Fuzzification using well-defined MFs can suppress noise in the inputs of
a fuzzy system (Wang, 1997).



Defuzzification

Defuzzification is the reverse process of fuzzification. Mathematically, the defuzzification of
a fuzzy set is the process of conversion of a fuzzy quantity into a crisp value. This 1s necessary
when a crisp value is to be provided from a fuzzy system to the user. For example, if we
develop a fuzzy system for blood pressure control, we will probably want to tell the user what
blood pressure is expected to be in the next time instant.

Fuzzy control engineers have many different ways of defuzzifying. However, there are quite
simple methods in use. It is intuitive that fuzzification and defuzzification should be reversible.



Defuzzification

That 1s, if we fuzzify a number into a fuzzy set and immediately defuzzify it, we should be
able to get the same number back again.

There are many defuzzification methods available in the literature. Very often standard
defuzzification methods fail in some applications. It is, therefore, important to select the
appropriate defuzzification method for a particular application. Unfortunately, there is no
standard rule for selecting a particular defuzzification method for an application. The choice
of the most appropriate method depends on the application. A good study on the selection
of appropriate defuzzification methods has been reported by Runker (1997). In the next few
sections, some widely used methods of defuzzification are presented.

Max-membership method: Also known as the height method, the max-membership
method is both simple and quick. This method takes the peak value of each fuzzy set and
builds the weighted sum of these peak values. This method is given by the algebraic expres-
sion in Equation (2.38).

A= (2.37)

Defuzzification using the max-membership method is shown in Figure 2.25(a). ¢ 1s the peak
value of the fuzzy sets and /i is the height of the clipped fuzzy sets, as shown in the figure.
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