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Fuzzy modelling

The general purpose of a model 1s to describe the functioning of a system in terms of
input/output behaviour.

Traditional techniques of system modelling have significant limitations.

In many cases it 1s difficult to describe the system behaviour by a set of mathematical
equations when the system is nonlinear and partially known or unknown.

Moreover, there are many uncertainties and unpredictable dynamics that do not allow the
system model to be described mathematically. Such uncertainties and unpredictable
behaviour in complicated and ill-defined systems can be modelled using the linguistic

approach as a model of human thinking, which introduced fuzziness into systems theory
(Zadeh, 1965, 1973).

Therefore, fuzzy system modelling 1s an important issue while control of such systems is of
concern.



INfroduction

>

Most of the classical design methodologies such as Nyquist, Bode, state-space and optimal control are based on
assumptions that the process is linear and stationary and hence is represented by a finite-dimensional constant-
coefficient linear model.

These methods do not suit complex systems well because few of these represent uncertainty and incompleteness
in process knowledge or complexity in design. But the fact is that the real world is too complex.

In particular, many industrial processes are highly nonlinear and complex. As the complexity of a system
increases, quantitative analysis and precision become difficult.

However, many processes that are nonlinear, uncertain, incomplete or non-stationary have subtle and interactive
exchanges with the operating environment and are controlled successfully by skilled human operators.

Rather than mathematically modelling the process, the human operator models the process in a heuristic or
experiential manner. It is evident that human knowledge is becoming more and more important in control system
design.

This experiential perspective in controller design requires the acquisition of heuristic and qualitative, rather than
quantitative, knowledge or expertise from the human operator.

During the past several years, fuzzy control has emerged as one of the most active and powerful areas for
research in the application of such complex and real-world systems using fuzzy set theory (Zadeh, 1965, 1994).

The control of complex nonlinear systems has been approached in recent years using fuzzy logic techniques.
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» A fuzzy logic controller (FLC) has the basic configuration
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Figure 3.10 Configuration of a fuzzy logic controller




Fuzzification

» Fuzzification is defined as a mapping from an observed input space to fuzzy sets in a certain input universe of
discourse.
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Figure 3.10 Configuration of a fuzzy logic controller




Inference

» Inference is the process of formulating a nonlinear mapping from a given input space to an output space. The
mapping then provides a basis from which decisions can be taken. The process of fuzzy inference involves all
the membership functions, fuzzy logic operators and if—then rules.
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Figure 3.10 Configuration of a fuzzy logic controller
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Rule base

A fuzzy system is characterized by a set of linguistic statements based on expert knowledge.
The expert knowledge is usually in the form of if—then rules, which are easily implemented
by fuzzy conditional statements in fuzzy logic (Wong and Lin, 1997).

The collection of fuzzy rules that are expressed as fuzzy conditional statements forms the rule base or the rule set
of an FLC.

Figure 3.10 Configuration of a fuzzy logic controller




Rule base

» For example, a rule base with two inputs, error and change of error, 1s shown in Table 3.1.

» Each input/output has five membership functions NB, NS, ZO, PS and PB, where PB=positive big, PS=positive
small, ZO=zero, NS=negative small and NB= big.

Table 3.1 FLC rule base with error and change of error

Change of error
Z0

PB
PS

Z0
NS
NB




Rule base

The design parameters of the rule base include:

Wy VvV Vv

Choice of process state and control output variables;

Choice of the content of the rule antecedent and the rule consequent;
Choice of term sets for the process state and control output variables;
Derivation of the set of rules.

If one has made the choice to design a P-, PD-, PI-, or PID-like fuzzy logic controller this
already implies the choice of process state and control output variables, as well as the
content of the rule antecedent and rule consequent for each of the rules.



Rule base

» The process state variables are selected as follows:

e Error, denoted by e;
e Change of error, denoted by Ae;
e Sum of error, denoted by Ze.

The control output (process input) variables representing the content of the rule consequent
(‘then’ part of the rule) are selected as follows:

e Control output, denoted by u;
e Change of control output, denoted by Auw.

By analogy with the conventional controller, these are defined as

® e(k) = ya — y(k)
o Ae(k)=¢e(k) —e(k — 1)
n n—l
o ) elk)= ) e(k)+e(k)
k=1 k=1
o Au(k) = u(k) — u(k — 1yoruk) = utk — 1) + Au(k)

where yy is the desired output or set point, y is the process output, & is the sampling time and
n is the maximum sample number.




Defuzzification

» Defuzzification is a mapping from a space of fuzzy control actions defined over an output universe of discourse
into a space of non-fuzzy (crisp) control actions. In a sense this is the inverse of fuzzification, even though
mathematically the maps need not be inverses of one another.
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Desigh of Fuzzy Controller

Let x = (x1, ..., X,) be a vector of process state variables, y the process output variable and
u the process input variable or control variable. The conventional closed-loop model, when
linearized around the set point, is given by

xk4+1)=A-x(k)+b" - u(k)
vik) =cl - x(k)

u(k) =k - v(k)

where A is the process matrix, b and ¢ are vectors and k is a scalar. The state equations can be
written as

xtk+1)=A- -x(k)+ b . u (k) (3.17)

uk) =k -’ - x(k) (3.18)




Design of Fuzzy Controller

The fuzzy counterpart of the above model can be described as follows. Let the linguistic
variable x; (e.g., error, change of error, etc.) have the term set X; (e.g., NB, NS, etc.) and the
membership function for X; be denoted by X i Thus, the linguistically defined process state
vector is denoted by X = ()1;] ey %H). Similarly, u takes linguistically defined values U with
membership functions U. Thus, the fuzzy model of the closed-loop system can be described

das

Xtk+1)=[Xk)yx Uk)]o A (3.19)

Uk)= X(k)o K (3.20)

where A is a fuzzy relation on X x U x X, o is the composition operation and K is the
controller which is a fuzzy relation on X x U representing the meaning of a set of if—then
rules of the form

I[f x;is X;and ...x,1s X; then u is Uy (3.21)

A can be obtained in explicit form by on/off-line identification or A is the fuzzy relation giving
the overall meaning of a set of production rules.




Fuzzy controller example

Suppose the fuzzy controller has to control the water level of a tank

Desired level
Water level

v(7) |

Figure 3.15 Water level in a tank




Fuzzy controller example muoup seecion

Rather than going for development of a mathematical model of the system with available
states, a fuzzy model using the available states, namely the error e, change of error Ae, sum
of error X ¢ and valve position u at each discrete time step during the control process, can be
developed.

The states of water level and state of valve can be measured directly from the system,
whereas the error e, change of error Ae and sum of error 2 e can be derived from these states

as follows:

e =7Vg— YV (3.22)

Ae =¢e(k) —elk —1) (3.23)

Y e(ky=> etk — 1)+ e(k) (3.24)

where y is the measured water level and vy, 1s the desired water level.




F U Zzy C O n Tro ‘ ‘ e r eXO m p | e Choice of Membership Functions

Since Lotfi Zadeh introduced fuzzy sets, the main difficulties have been with the meaning and
measurement of membership functions as well as their extraction, modification and adaptation
to dynamically changing conditions. There is no general rule for choice of membership
functions, and this mainly depends on the problem domain. In general, use of narrower
membership functions results in a faster response but causes larger oscillations, overshoot and

settling time.

Gaussian and bell-shaped membership functions involve calculation of exponential terms
and use substantial processing time. Trapezoidal membership functions have four parameters
and can burden the optimization procedure. Triangular membership functions are the best
choice and used for simplicity.




Fuzzy controller example craion o rue s

The fuzzy rules R must be completed and covered by fuzzy partitioning the input space.
Figure 3.16 shows an input space partitioning for two-input single-output systemes.

A 1 A2 A 3 A 4 E

Figure 3.16 Fuzzy input space partitioning




Fuzzy controller example craion o rue s

For example, the error and change of error and valve position of a PD-like FLC can be
divided into four partitions (i.e., partitioned into four fuzzy sets) as:

error E = {Al, A2, A3, A4}
change of error AE = { By, B, B3, By}
valve position U = {Cy, Ca, C3, Cy4}

where E, AE and U are the universe of discourse for error, change of error and valve position,
respectively. The nth rule for the two-input single-output system is

R, :IF (eis A;)and (Aeis Bj) THEN (u is Cy)

where R,, n = 1,2

16, 1s the nth fuzzy rule. A;, B; and Cy. i =1,2,....4, j =
1,2,...,4and k =1,2,...,4, are primary fuzzy sets. There are 16 rules obtained from
this uniform partitioning. Initially, fuzzy rules are based on input/output data and these rules
are refined through trial and error.




Types of fuzzy controllers

A fuzzy controller can be constructed using e, Ae and Xe as inputs and control input u as
output depending on the type of controller, e.g. PD, PI or PID type.
P-like FLC: The equation for a conventional proportional (P)-like controller is given as

u=rky,-e(k) (3.25)

where k, is the proportional gain coefficient. The rule for a P-like controller is given in
symbolic form as

[feis A;thenuis B; (3.26)
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Figure 3.17 Block diagram of a P-type FLC with error

where A; and B;.i, j = 1,2, ..., n, are the linguistic variables. Figure 3.17 shows the block
diagram of a P-type single-input single-output fuzzy controller for a plant. The function of the
control output for such a single-input single-output (SISO) system is then a curve, as shown
in Figure 3.18 for n = 4.




Types of fuzzy controllers

igure 3.18 Function of control output for SISO systems



Types of fuzzy controllers

PD-like FL.C: A conventional proportional differential (PD)-like FLLC can be developed by
using an error and change of error model as

U = kp.e + kg.Ae (3.27)

where k, and k; are the proportional and differential gain coefficients and e is the error, Ae
is the change of error. In this type of FLC, it is assumed that no mathematical model for the
system 1s available except two states, namely, the error and change of error. Only output y is
measured from the system and the error and change of error are derived. The error and change
of error are defined as

e(k) = vqg — v(k) (3.28)

Ae(k) = e(k) — e(k — 1) (3.29)

where y; 1s the desired output and y(k) is the actual output. Figure 3.19 shows the
block diagram of a PD-like FLC with error and change of error as inputs. The PD-like
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Figure 3.19 Block diagram of PD-like FL.C with error and change of error

FLC consists of rules of the form

If eis A; and Aeis B thenu is Cy

where A;, Bj and Cy are the linguistic variables and i = 1,...,n(, j=1,...,n2 and k =
l,....,m.

The control surface of a two-input single-output (MISO) system is shown in Figure 3.20,
where X and Y represent inputs and Z represents the controller output. For a PD-type controller,
X represents error and Y represents change of error. For a PI-type controller, X represents error
and Y represents sum of error.
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Example 3.1: PD-like FLC with error and change of error A simple PD-like FLC
is developed for a manipulator. A schematic representation of the flexible-link manipulator
system considered here is shown in Figure 3.21, where X,0Y, and XOY represent the stationary
and moving coordinates, respectively and t represents the applied torque at the hub. E, I, p,
V., I, and Mp represent the Young's modulus, area moment of inertia, mass density per unit
volume, cross-sectional area, hub inertia and payload of the manipulator, respectively. In this
example, the motion of the manipulator is confined to the X,0Y, plane.

In a PD-type FLC, it is assumed that no mathematical model for the flexible link is available
except two states, namely, the hub angle error and change of error. Only the hub angle 6 is

measured from the system and the error and change of error are derived from €. The hub angle
error and change of error are defined as

e(k) =64 — 0(k) (3.31)
Ae(k) =e(k) —elk — 1) (3.32)

where 6, 1s the desired hub angle, e is the error and Ae 1s the change in angle error. Figure 3.22
shows a block diagram of the PD-like FLC with error and change of error as inputs.




Types of fuzzy controllers

Triangular membership functions are chosen for inputs and output. The membership func-
tions for angle error, change of angle error and torque input are shown in Figure 3.23. The
universe of discourse for the angle error and change in angle error are chosen as [-36, +36]
degrees and [-25, 4+25] respectively. The universe of discourse of the output (i.e., input torque)
is chosen as [-3, 43] volts. To construct a rule base, the angle error, change of angle error and
torque input are partitioned into five primary fuzzy sets as

hub angle error E = {NB, NS, ZO, PS, PB}
change of angle error C = {NB, NS, ZO, PS, PB}
torque U = {NB, NS, ZO, PS, PB}

Rule base Flexible

i manipulator

Output
—>

Fuzzy
controller

Figure 3.22 PD-like FLC with angle error and change of angle error




Types of fuzzy controllers

Figure 3.23 Membership functions for inputs and output. (a) Angle error: (b) Change of angle error:
(c¢) Torque input
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Table 3.2 FLC rule base with angle error and change of angle error

Change of error
Error Z0

NB PB
NS PS

Z0O Z0O
PS S NS
PB S NB




Types of fuzzy controllers

PlI-like FLC: A conventional proportional-integral (PI)-like controller is described as

u = kpe"-l-k;fedf

where kp and k; are the proportional and integral gain coefficients. Taking the derivative with
respect to time of Equation (3.30) yields

iw=kp-é+kj-e (3.34)
which can be rewritten as

Au=kp-Ae+kj-e (3.35)

This yields an incremental PI-like controller equation. The Pl-like FLC rule base accordingly
consists of rules of the form

If eis A; and Aeis Bj then Au is Cy

In this case, to obtain the value of the control output u(k), the change of control output Au(k)
is added to u(k — 1) such that

uk) = Au(k) +uk — 1) (3.30)
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Ifeis A; and Zeis Bj thenu is Cy

Rule base
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controller

Figure 3.26 Block diagram of a PI-type FLC with error and sum of error
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