Introduction to Neural Networks and Perceptron

Machine intelligence

Dr. Ahmad Al-Mahasneh

Review of the last lecture

- AI methods and techniques
- AI Applications

Outline

- Human brain and neural networks
- Artificial neural networks properties, elements, activation functions and architecture.
- Learning types and tasks.
- Perceptron, OR, AND and XOR problems

Human Brain

 The brain is a highly complex, nonlinear, parallel, and fast processor.

- How do humans learn ?
 - Through Experience over time by observing the environment and interacting with it (reinforcement learning) and learning from their parents (supervised)

Human Brain

It performs certain computations (e.g., pattern recognition, perception, and motor control) many times faster than the fastest digital computer in existence today.

Artificial Neural Network (ANN)

•ANN is a massively parallel distributed processor made up of simple processing units that has the capability to store experiential knowledge and make it available for later use.

ANN resemble human brain in:

•1. Knowledge is acquired by the network from its environment through a learning process.

•2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired knowledge.

Neural Network Properties

- Nonlinearity: as it is nonlinear, it enable us to capture nonlinearities in the training data.
- Input-Output Mapping: building a relationship between the inputs and outputs.
- Adaptivity: the ability to learn(adapt their parameters).
- Fault-tolerance: even if parts of the network failed, it will still produce a reasonable output.

Neuron Elements

- Synaptic weights
- Summing junctions (adders)
- Activation Functions

$$u_k = \sum_{j=1}^m w_{kj} x_j$$

 $y_k = \varphi(u_k)$

Neuron Elements

- Weights
- Summing junction
- Activation Function

Activation Functions

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = max(0,z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	

Network Architectures

- Sing layer neural networks
- Multi-layer feedforward neural networks
- Recurrent neural networks

(a) Recurrent Neural Network

(b) Feed-Forward Neural Network

Architecture: Single Layer

Architecture: Multilayer Feedforward Network

Architecture: Recurrent Network

Perceptron

$$net = \sum_{\{m\}}^{\{i=1\}} x_i w_i$$

y = f(net)

Perceptron with two inputs

 $net = w_1x_1 + x_2w_2 + b$

using a threshold activation function $y = f(net) = \begin{cases} 0 & if net < 0 \\ 1 & if net \ge 0 \end{cases}$

Perceptron: OR Problem

Let w1 = w2 = 1 and b = -0.5 $\Rightarrow net = x_1 + x_2 - 0.5$ $y = \begin{cases} 0 & x_1 + x_2 - 0.5 < 0 \\ 1 & x_1 + x_2 - 0.5 \ge 0 \end{cases}$

 $net = w_1x_1 + x_2w_2 + b$

Perceptron: ANDProblem

x2	x1	у
0	0	0
0	1	0
1	0	0
1	1	1

Perceptron: XOR Problem

x2	x1	у
0	0	0
0	1	1
1	0	1
1	1	0

Can we separate the classes using one line ?

Perceptron: XOR Problem

x1	x2	y1	y2	z
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

$$z = \begin{cases} 0 & y_1 - y_2 - 0.1 < 0 \\ 1 & y_1 - y_2 - 0.1 \ge 0 \end{cases}$$

$$y_1 = \begin{cases} 0 & x_1 + x_2 - 0.5 < 0 \\ 1 & x_1 + x_2 - 0.5 \ge 0 \end{cases}$$
$$y_2 = \begin{cases} 0 & x_1 + x_2 - 1.5 < 0 \\ 1 & x_1 + x_2 - 1.5 \ge 0 \end{cases}$$

Conclusions

- Neurons are composed of Weights, Summations and Activation Functions.
- Activation Functions can be Threshold, Sigmoidal, Hyperbolic Tangent and Linear.

• Network Architectures are Feedforward and Recurrent

Conclusions

- A Perceptron is a single neuron
- A Perceptron can be used to classify data if they can be separated by a single line (e.g. AND / OR problems)
- Hidden nodes are needed to classify the XOR problem
- More layers increase the computational power of neural networks.

 Neural Networks and Learning Machine (Chapter One) by Simon Haykin 3rd Edition. Pearson 2009