
Chapter 3 – Data Representation 
 
Section 3.1 – Data Types 
 

• Registers contain either data or control information 
• Control information is a bit or group of bits used to specify the sequence of 

command signals needed for data manipulation 
• Data are numbers and other binary-coded information that are operated on 
• Possible data types in registers: 

o Numbers used in computations 
o Letters of the alphabet used in data processing 
o Other discrete symbols used for specific purposes 

• All types of data, except binary numbers, are represented in binary-coded form 
 
• A number system of base, or radix, r is a system that uses distinct symbols for r 

digits 
• Numbers are represented by a string of digit symbols 
• The string of digits 724.5 represents the quantity 

 
7 x 102 + 2 x 101 + 4 x 100 + 5 x 10-1

 
• The string of digits 101101 in the binary number system represents the quantity 

 
1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 45 

 
• (101101)2 = (45)10 
• We will also use the octal (radix 8) and hexidecimal (radix 16) number systems 

 
(736.4)8  =  7 x 82 + 3 x 81 + 6 x 80 + 4 x 8-1  =  (478.5)10
 
(F3)16  =  F x 161

 + 3 x 160  =  (243)10
 

• Conversion from decimal to radix r system is carried out by separating the 
number into its integer and fraction parts and converting each part separately 

• Divide the integer successively by r and accumulate the remainders 
• Multiply the fraction successively by r until the fraction becomes zero 
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• Each octal digit corresponds to three binary digits 
• Each hexadecimal digit corresponds to four binary digits 
• Rather than specifying numbers in binary form, refer to them in octal or 

hexadecimal and reduce the number of digits by 1/3 or ¼, respectively 
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• A binary code is a group of n bits that assume up to 2n distinct combinations 
• A four bit code is necessary to represent the ten decimal digits – 6 are unused  
• The most popular decimal code is called binary-coded decimal (BCD) 
• BCD is different from converting a decimal number to binary 
• For example 99, when converted to binary, is 1100011 
• 99 when represented in BCD is 1001 1001 
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• The standard alphanumeric binary code is ASCII 
• This uses seven bits to code 128 characters 
• Binary codes are required since registers can hold binary information only 
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Section 3.2 – Complements 
 

• Complements are used in digital computers for simplifying subtraction and logical 
manipulation 

• Two types of complements for each base r system: r’s complement and (r – 1)’s 
complement 

• Given a number N in base r having n digits, the (r – 1)’s complement of N is 
defined as (rn – 1) – N 

 
• For decimal, the 9’s complement of N is (10n – 1) – N 
• The 9’s complement of 546700 is 999999 – 546700 = 453299 
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• The 9’s complement of 453299 is 999999 – 453299 = 546700 
• For binary, the 1’s complement of N is (2n – 1) – N 
• The 1’s complement of 1011001 is 1111111 – 1011001 = 0100110 
• The 1’s complement is the true complement of the number – just toggle all bits 
 
• The r’s complement of an n-digit number N in base r is defined as rn – N 
• This is the same as adding 1 to the (r – 1)’s complement 
• The 10’s complement of 2389 is 7610 + 1 = 7611 
• The 2’s complement of 101100 is 010011 + 1 = 010100 
 
• Subtraction of unsigned n-digit numbers: M – N  

o Add M to the r’s complement of N – this results in  
M + (rn – N) = M – N + rn

o If M ≥ N, the sum will produce an end carry rn which is discarded 
o If M < N, the sum does not produce an end carry and is equal to                

rn – (N – M), which is the r’s complement of (N – M).  To obtain the 
answer in a familiar form, take the r’s complement of the sum and place a 
negative sign in front. 

 
Example: 72532 – 13250 = 59282. The 10’s complement of 13250 is 86750. 
 
  M   =   72352 
  10’s comp. of N =  +86750
  Sum   =  159282 
  Discard end carry = -100000
  Answer  =    59282 
 
Example for M < N: 13250 – 72532 = -59282 
 
  M   =   13250 
  10’s comp. of N =  +27468
  Sum   =   40718 
  No end carry 
  Answer  =  -59282 (10’s comp. of 40718) 
 
Example for X = 1010100 and Y = 1000011 
 
  X   =   1010100 
  2’s comp. of Y  = +0111101
  Sum   =  10010001 
  Discard end carry = -10000000
  Answer X – Y  =    0010001 
 
  Y   =    1000011 

   2’s comp. of X  =  +0101100
   Sum   =   1101111 
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   No end carry  
   Answer  =  -0010001  (2’s comp. of 1101111) 
 
Section 3.3 – Fixed-Point Representation 
 

• Positive integers and zero can be represented by unsigned numbers 
• Negative numbers must be represented by signed numbers since + and – signs are 

not available, only 1’s and 0’s are 
• Signed numbers have msb as 0 for positive and 1 for negative – msb is the sign bit 
• Two ways to designate binary point position in a register 

o Fixed point position 
o Floating-point representation 

• Fixed point position usually uses one of the two following positions 
o A binary point in the extreme left of the register to make it a fraction 
o A binary point in the extreme right of the register to make it an integer 
o In both cases, a binary point is not actually present 

• The floating-point representations uses a second register to designate the position 
of the binary point in the first register 

 
• When an integer is positive, the msb, or sign bit, is 0 and the remaining bits 

represent the magnitude 
• When an integer is negative, the msb, or sign bit, is 1, but the rest of the number 

can be represented in one of three ways 
o Signed-magnitude representation 
o Signed-1’s complement representation 
o Signed-2’s complement representation 

 
• Consider an 8-bit register and the number +14 

o The only way to represent it is 00001110 
• Consider an 8-bit register and the number –14 

o Signed magnitude:  1  0001110 
o Signed 1’s complement: 1  1110001 
o Signed 2’s complement: 1  1110010 

• Typically use signed 2’s complement 
 
• Addition of two signed-magnitude numbers follow the normal rules 

o If same signs, add the two magnitudes and use the common sign 
o Differing signs, subtract the smaller from the larger and use the sign of the 

larger magnitude 
o Must compare the signs and magnitudes and then either add or subtract 

• Addition of two signed 2’s complement numbers does not require a comparison or 
subtraction – only addition and complementation 

o Add the two numbers, including their sign bits 
o Discard any carry out of the sign bit position 
o All negative numbers must be in the 2’s complement form 
o If the sum obtained is negative, then it is in 2’s complement form 
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 +6  00000110   -6 11111010 
+13 00001101  +13 00001101
+19 00010011   +7 00000111 
 
 +6  00000110   -6 11111010 
-13  11110011  -13 11110011
 -7  11111001  -19 11101101 
 

• Subtraction of two signed 2’s complement numbers is as follows 
o Take the 2’s complement form of the subtrahend (including sign bit) 
o Add it to the minuend (including the sign bit) 
o A carry out of the sign bit position is discarded 

 
• An overflow occurs when two numbers of n digits each are added and the sum 

occupies n + 1 digits 
• Overflows are problems since the width of a register is finite 
• Therefore, a flag is set if this occurs and can be checked by the user 
• Detection of an overflow depends on if the numbers are signed or unsigned 
• For unsigned numbers, an overflow is detected from the end carry out of the msb 
• For addition of signed numbers, an overflow cannot occur if one is positive and 

one is negative – both have to have the same sign 
• An overflow can be detected if the carry into the sign bit position and the carry 

out of the sign bit position are not equal 
 
 

+70 0  1000110  -70 1  0111010 
+80 0  1010000  -80 1  0110000 
+150 1  0010110  -150 0  1101010 

 
• The representation of decimal numbers in registers is a function of the binary 

code used to represent a decimal digit 
• A 4-bit decimal code requires four flip-flops for each decimal digit 
• This takes much more space than the equivalent binary representation and the 

circuits required to perform decimal arithmetic are more complex 
• Representation of signed decimal numbers in BCD is similar to the representation 

of signed numbers in binary 
• Either signed magnitude or signed complement systems 
• The sign of a number is represented with four bits 

o 0000 for + 
o 1001 for – 

• To obtain the 10’s complement of a BCD number, first take the 9’s complement 
and then add one to the least significant digit 

 
• Example: (+375) + (-240) = +135 
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 0   375  (0000  0011  0111  1010)BCD

  +9  760  (1001  0111  0110  0000)BCD
   0   135  (0000  0001  0011  0101)BCD 

 

 
Section 3.4 – Floating-Point Representation 
 

• The floating-point representation of a number has two parts 
• The first part represents a signed, fixed-point number – the mantissa 
• The second part designates the position of the binary point – the exponent 
• The mantissa may be a fraction or an integer 
• Example: the decimal number +6132.789 is 

o Fraction: +0.6123789 
o Exponent: +04 
o Equivalent to +0.6132789 x 10+4 

• A floating-point number is always interpreted to represent m x re 
• Example: the binary number +1001.11 (with 8-bit fraction and 6-bit exponent) 

o Fraction: 01001110 
o Exponent: 000100 
o Equivalent to +(.1001110)2 x 2+4 

• A floating-point number is said to be normalized if the most significant digit of 
the mantissa is nonzero 

• The decimal number 350 is normalized, 00350 is not 
• The 8-bit number 00011010 is not normalized 
• Normalize it by fraction = 11010000 and exponent = -3 
• Normalized numbers provide the maximum possible precision for the floating-

point number 
 
Section 3.5 – Other Binary Codes 
 

• Digital systems can process data in discrete form only 
• Continuous, or analog, information is converted into digital form by means of an 

analog-to-digital converter 
• The reflected binary or Gray code, is sometimes used for the converted digital 

data 
• The Gray code changes by only one bit as it sequences from one number to the 

next 
• Gray code counters are sometimes used to provide the timing sequences that 

control the operations in a digital system 
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• Binary codes for decimal digits require a minimum of four bits 
• Other codes besides BCD exist to represent decimal digits 
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• The 2421 code and the excess-3 code are both self-complementing 
• The 9’s complement of each digit is obtained by complementing each bit in the 

code 
• The 2421 code is a weighted code 
• The bits are multiplied by indicated weights and the sum gives the decimal digit 
• The excess-3 code is obtained from the corresponding BCD code added to 3 

 
 
Section 3.6 – Error Detection Codes 
 

• Transmitted binary information is subject to noise that could change bits 1 to 0 
and vice versa 

• An error detection code is a binary code that detects digital errors during 
transmission 

• The detected errors cannot be corrected, but can prompt the data to be 
retransmitted 

• The most common error detection code used is the parity bit 
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• A parity bit is an extra bit included with a binary message to make the total 
number of 1’s either odd or even 

 

 
 

• The P(odd) bit is chosen to make the sum of 1’s in all four bits odd 
• The even-parity scheme has the disadvantage of having a bit combination of all 

0’s 
• Procedure during transmission: 

o At the sending end, the message is applied to a parity generator 
o The message, including the parity bit, is transmitted 
o At the receiving end, all the incoming bits are applied to a parity checker 
o Any odd number of errors are detected 

 
• Parity generators and checkers are constructed with XOR gates (odd function) 
• An odd function generates 1 iff an odd number if input variables are 1 
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