
Chapter 3 – Data Representation

Section 3.1 – Data Types

• Registers contain either data or control information
• Control information is a bit or group of bits used to specify the sequence of

command signals needed for data manipulation
• Data are numbers and other binary-coded information that are operated on
• Possible data types in registers:

o Numbers used in computations
o Letters of the alphabet used in data processing
o Other discrete symbols used for specific purposes

• All types of data, except binary numbers, are represented in binary-coded form

• A number system of base, or radix, r is a system that uses distinct symbols for r

digits
• Numbers are represented by a string of digit symbols
• The string of digits 724.5 represents the quantity

7 x 102 + 2 x 101 + 4 x 100 + 5 x 10-1

• The string of digits 101101 in the binary number system represents the quantity

1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 45

• (101101)2 = (45)10
• We will also use the octal (radix 8) and hexidecimal (radix 16) number systems

(736.4)8 = 7 x 82 + 3 x 81 + 6 x 80 + 4 x 8-1 = (478.5)10

(F3)16 = F x 161

 + 3 x 160 = (243)10

• Conversion from decimal to radix r system is carried out by separating the
number into its integer and fraction parts and converting each part separately

• Divide the integer successively by r and accumulate the remainders
• Multiply the fraction successively by r until the fraction becomes zero

Computer Architecture 1
Chapter 3

• Each octal digit corresponds to three binary digits
• Each hexadecimal digit corresponds to four binary digits
• Rather than specifying numbers in binary form, refer to them in octal or

hexadecimal and reduce the number of digits by 1/3 or ¼, respectively

Computer Architecture 2
Chapter 3

Computer Architecture 3
Chapter 3

• A binary code is a group of n bits that assume up to 2n distinct combinations
• A four bit code is necessary to represent the ten decimal digits – 6 are unused
• The most popular decimal code is called binary-coded decimal (BCD)
• BCD is different from converting a decimal number to binary
• For example 99, when converted to binary, is 1100011
• 99 when represented in BCD is 1001 1001

Computer Architecture 4
Chapter 3

• The standard alphanumeric binary code is ASCII
• This uses seven bits to code 128 characters
• Binary codes are required since registers can hold binary information only

Computer Architecture 5
Chapter 3

Section 3.2 – Complements

• Complements are used in digital computers for simplifying subtraction and logical
manipulation

• Two types of complements for each base r system: r’s complement and (r – 1)’s
complement

• Given a number N in base r having n digits, the (r – 1)’s complement of N is
defined as (rn – 1) – N

• For decimal, the 9’s complement of N is (10n – 1) – N
• The 9’s complement of 546700 is 999999 – 546700 = 453299

Computer Architecture 6
Chapter 3

• The 9’s complement of 453299 is 999999 – 453299 = 546700
• For binary, the 1’s complement of N is (2n – 1) – N
• The 1’s complement of 1011001 is 1111111 – 1011001 = 0100110
• The 1’s complement is the true complement of the number – just toggle all bits

• The r’s complement of an n-digit number N in base r is defined as rn – N
• This is the same as adding 1 to the (r – 1)’s complement
• The 10’s complement of 2389 is 7610 + 1 = 7611
• The 2’s complement of 101100 is 010011 + 1 = 010100

• Subtraction of unsigned n-digit numbers: M – N

o Add M to the r’s complement of N – this results in
M + (rn – N) = M – N + rn

o If M ≥ N, the sum will produce an end carry rn which is discarded
o If M < N, the sum does not produce an end carry and is equal to

rn – (N – M), which is the r’s complement of (N – M). To obtain the
answer in a familiar form, take the r’s complement of the sum and place a
negative sign in front.

Example: 72532 – 13250 = 59282. The 10’s complement of 13250 is 86750.

 M = 72352
 10’s comp. of N = +86750
 Sum = 159282
 Discard end carry = -100000
 Answer = 59282

Example for M < N: 13250 – 72532 = -59282

 M = 13250
 10’s comp. of N = +27468
 Sum = 40718
 No end carry
 Answer = -59282 (10’s comp. of 40718)

Example for X = 1010100 and Y = 1000011

 X = 1010100
 2’s comp. of Y = +0111101
 Sum = 10010001
 Discard end carry = -10000000
 Answer X – Y = 0010001

 Y = 1000011

 2’s comp. of X = +0101100
 Sum = 1101111

Computer Architecture 7
Chapter 3

 No end carry
 Answer = -0010001 (2’s comp. of 1101111)

Section 3.3 – Fixed-Point Representation

• Positive integers and zero can be represented by unsigned numbers
• Negative numbers must be represented by signed numbers since + and – signs are

not available, only 1’s and 0’s are
• Signed numbers have msb as 0 for positive and 1 for negative – msb is the sign bit
• Two ways to designate binary point position in a register

o Fixed point position
o Floating-point representation

• Fixed point position usually uses one of the two following positions
o A binary point in the extreme left of the register to make it a fraction
o A binary point in the extreme right of the register to make it an integer
o In both cases, a binary point is not actually present

• The floating-point representations uses a second register to designate the position
of the binary point in the first register

• When an integer is positive, the msb, or sign bit, is 0 and the remaining bits

represent the magnitude
• When an integer is negative, the msb, or sign bit, is 1, but the rest of the number

can be represented in one of three ways
o Signed-magnitude representation
o Signed-1’s complement representation
o Signed-2’s complement representation

• Consider an 8-bit register and the number +14

o The only way to represent it is 00001110
• Consider an 8-bit register and the number –14

o Signed magnitude: 1 0001110
o Signed 1’s complement: 1 1110001
o Signed 2’s complement: 1 1110010

• Typically use signed 2’s complement

• Addition of two signed-magnitude numbers follow the normal rules

o If same signs, add the two magnitudes and use the common sign
o Differing signs, subtract the smaller from the larger and use the sign of the

larger magnitude
o Must compare the signs and magnitudes and then either add or subtract

• Addition of two signed 2’s complement numbers does not require a comparison or
subtraction – only addition and complementation

o Add the two numbers, including their sign bits
o Discard any carry out of the sign bit position
o All negative numbers must be in the 2’s complement form
o If the sum obtained is negative, then it is in 2’s complement form

Computer Architecture 8
Chapter 3

 +6 00000110 -6 11111010
+13 00001101 +13 00001101
+19 00010011 +7 00000111

 +6 00000110 -6 11111010
-13 11110011 -13 11110011
 -7 11111001 -19 11101101

• Subtraction of two signed 2’s complement numbers is as follows
o Take the 2’s complement form of the subtrahend (including sign bit)
o Add it to the minuend (including the sign bit)
o A carry out of the sign bit position is discarded

• An overflow occurs when two numbers of n digits each are added and the sum

occupies n + 1 digits
• Overflows are problems since the width of a register is finite
• Therefore, a flag is set if this occurs and can be checked by the user
• Detection of an overflow depends on if the numbers are signed or unsigned
• For unsigned numbers, an overflow is detected from the end carry out of the msb
• For addition of signed numbers, an overflow cannot occur if one is positive and

one is negative – both have to have the same sign
• An overflow can be detected if the carry into the sign bit position and the carry

out of the sign bit position are not equal

+70 0 1000110 -70 1 0111010
+80 0 1010000 -80 1 0110000
+150 1 0010110 -150 0 1101010

• The representation of decimal numbers in registers is a function of the binary

code used to represent a decimal digit
• A 4-bit decimal code requires four flip-flops for each decimal digit
• This takes much more space than the equivalent binary representation and the

circuits required to perform decimal arithmetic are more complex
• Representation of signed decimal numbers in BCD is similar to the representation

of signed numbers in binary
• Either signed magnitude or signed complement systems
• The sign of a number is represented with four bits

o 0000 for +
o 1001 for –

• To obtain the 10’s complement of a BCD number, first take the 9’s complement
and then add one to the least significant digit

• Example: (+375) + (-240) = +135

Computer Architecture 9
Chapter 3

 0 375 (0000 0011 0111 1010)BCD

 +9 760 (1001 0111 0110 0000)BCD
 0 135 (0000 0001 0011 0101)BCD

Section 3.4 – Floating-Point Representation

• The floating-point representation of a number has two parts
• The first part represents a signed, fixed-point number – the mantissa
• The second part designates the position of the binary point – the exponent
• The mantissa may be a fraction or an integer
• Example: the decimal number +6132.789 is

o Fraction: +0.6123789
o Exponent: +04
o Equivalent to +0.6132789 x 10+4

• A floating-point number is always interpreted to represent m x re
• Example: the binary number +1001.11 (with 8-bit fraction and 6-bit exponent)

o Fraction: 01001110
o Exponent: 000100
o Equivalent to +(.1001110)2 x 2+4

• A floating-point number is said to be normalized if the most significant digit of
the mantissa is nonzero

• The decimal number 350 is normalized, 00350 is not
• The 8-bit number 00011010 is not normalized
• Normalize it by fraction = 11010000 and exponent = -3
• Normalized numbers provide the maximum possible precision for the floating-

point number

Section 3.5 – Other Binary Codes

• Digital systems can process data in discrete form only
• Continuous, or analog, information is converted into digital form by means of an

analog-to-digital converter
• The reflected binary or Gray code, is sometimes used for the converted digital

data
• The Gray code changes by only one bit as it sequences from one number to the

next
• Gray code counters are sometimes used to provide the timing sequences that

control the operations in a digital system

Computer Architecture 10
Chapter 3

• Binary codes for decimal digits require a minimum of four bits
• Other codes besides BCD exist to represent decimal digits

Computer Architecture 11
Chapter 3

• The 2421 code and the excess-3 code are both self-complementing
• The 9’s complement of each digit is obtained by complementing each bit in the

code
• The 2421 code is a weighted code
• The bits are multiplied by indicated weights and the sum gives the decimal digit
• The excess-3 code is obtained from the corresponding BCD code added to 3

Section 3.6 – Error Detection Codes

• Transmitted binary information is subject to noise that could change bits 1 to 0
and vice versa

• An error detection code is a binary code that detects digital errors during
transmission

• The detected errors cannot be corrected, but can prompt the data to be
retransmitted

• The most common error detection code used is the parity bit

Computer Architecture 12
Chapter 3

• A parity bit is an extra bit included with a binary message to make the total
number of 1’s either odd or even

• The P(odd) bit is chosen to make the sum of 1’s in all four bits odd
• The even-parity scheme has the disadvantage of having a bit combination of all

0’s
• Procedure during transmission:

o At the sending end, the message is applied to a parity generator
o The message, including the parity bit, is transmitted
o At the receiving end, all the incoming bits are applied to a parity checker
o Any odd number of errors are detected

• Parity generators and checkers are constructed with XOR gates (odd function)
• An odd function generates 1 iff an odd number if input variables are 1

Computer Architecture 13
Chapter 3

Computer Architecture 14
Chapter 3

