Chapter 3 — Data Representation

Section 3.1 — Data Types

Registers contain either data or control information
Control information is a bit or group of bits used to specify the sequence of
command signals needed for data manipulation
Data are numbers and other binary-coded information that are operated on
Possible data types in registers:

0 Numbers used in computations

0 Letters of the alphabet used in data processing

o Other discrete symbols used for specific purposes
All types of data, except binary numbers, are represented in binary-coded form

A number system of base, or radix, r is a system that uses distinct symbols for r
digits

Numbers are represented by a string of digit symbols

The string of digits 724.5 represents the quantity

7x10°+2x10"+4x10°+5x 10™
The string of digits 101101 in the binary number system represents the quantity
1x2°+0x2°+1x28+1x2°+0x2'+1x2°=45

(101101), = (45)10
We will also use the octal (radix 8) and hexidecimal (radix 16) number systems

(736.4)s = 7x8+3x8'+6x8°+4x8" = (478.5)1
(F3)1 = Fx 16"+ 3x 16° = (243)yg

Conversion from decimal to radix r system is carried out by separating the
number into its integer and fraction parts and converting each part separately
Divide the integer successively by r and accumulate the remainders
Multiply the fraction successively by r until the fraction becomes zero

Computer Architecture
Chapter 3

Figure 3-1 Conversion of decimal 41.6875 into binary.

Integer = 41 Fraction = 0.6875

4] 0.6875
20 |1 2
10 |0 1.3750
510 X 2
21 0.7500
110 o x 2
011 1.5000
_x 2
1.0000

(41),0 =(101001), (0.6875);5 =(0.1011),

(41.6875),5 = (101001.1011),

e Each octal digit corresponds to three binary digits

e Each hexadecimal digit corresponds to four binary digits

e Rather than specifying numbers in binary form, refer to them in octal or
hexadecimal and reduce the number of digits by 1/3 or ¥4, respectively

‘_l_MZﬁ 7ﬁ,5-,4‘,3 Octal
IOIOIIIIOIIODOIlBinary
A F 6 3 Hexadecimal

Figure 3-2 Binary, octal, and hexadecimal conversion.

Computer Architecture
Chapter 3

TABLE 3-1 Binary-Coded Octal Numbers

Octal Binary-coded Decimal
number octal equivalent
0 000 0 I
1 001 1
2 010 2 Code
3 011 3 for one
4 100 4 octal
5 101 5 digit
6 110 6
4 111 7 l
10 001 000 8
11 001 001 9
12 001 010 10
24 010 100 20
62 110 010 50
143 001 100 011 99
370 011 111 000 248

Computer Architecture
Chapter 3

TABLE 3-2 Binary-Coded Hexadecimal Numbers

Hexadecimal Binary-coded Decimal
number hexadecimal equivalent
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
S 0101 5
6 0110 6 Code
7 0111 7 for one
8 1000 8 hexadecimal
9 1001 9 digit
A 1010 10
B 1011 11
c 1100 12
D 1101 13
E 1110 14
F 1111 15
14 0001 0100 20
32 0011 0010 50
63 0110 0011 99
F8 1111 1000 248

Computer Architecture
Chapter 3

A binary code is a group of n bits that assume up to 2" distinct combinations
A four bit code is necessary to represent the ten decimal digits — 6 are unused
The most popular decimal code is called binary-coded decimal (BCD)

BCD is different from converting a decimal number to binary

For example 99, when converted to binary, is 1100011

99 when represented in BCD is 1001 1001

TABLE 3-3 Binary-Coded Decimal (BCD) Numbers

Decimal Binary-coded decimal

number (BCD) number
0 0000 1
1 0001 i
2 0010
3 0011 Code
4 0100 for one
5 0101 decimal
6 0110 digit
7 0111
8 1000 i
9 1001 !
10 0001 0000
20 0010 0000
50 0101 0000
99 1001 1001
248 0010 0100 1000

e The standard alphanumeric binary code is ASCII
e This uses seven bits to code 128 characters
e Binary codes are required since registers can hold binary information only

Computer Architecture
Chapter 3

TABLE 3-4 American Standard Code for Information Interchange (ASCII)

Binary Binary
Character code Character code

A 100 0001 0 011 0000
B 100 0010 1 011 0001
@ 100 0011 Z 011 0010
D 100 0100 3 011 0011
E 100 0101 4 011 0100
F 100 0110 5 011 0101
G 100 0111 6 011 0110
H 100 1000 7 011 0111
I 100 1001 8 011 1000
J 100 1010 9 011 1001
K 100 1011
L 100 1100
M 100 1101 space 010 0000
N 100 1110 ; 010 1110
(¢} 100 1111 (010 1000
P 101 0000 + 010 1011
Q 101 0001 $ 010 0100
R 101 0010 * 010 1010
S 101 0011) 010 1001
T 101 0100 = 010 1101
U 101 0101 / 010 1111
\" 101 0110 , 010 1100
W 101 0111 = 011 1101
X 101 1000
X 101 1001
Z 101 1010

Section 3.2 — Complements

e Complements are used in digital computers for simplifying subtraction and logical
manipulation

e Two types of complements for each base r system: r’s complement and (r — 1)’s
complement

e Given a number N in base r having n digits, the (r — 1)’s complement of N is
defined as (r" - 1) - N

e For decimal, the 9’s complement of N is (10" - 1) —= N
e The 9’s complement of 546700 is 999999 — 546700 = 453299

Computer Architecture 6
Chapter 3

The 9’s complement of 453299 is 999999 — 453299 = 546700

For binary, the 1’s complement of N is (2" - 1) =N

The 1’s complement of 1011001 is 1111111 — 1011001 = 0100110

The 1’s complement is the true complement of the number — just toggle all bits

The r’s complement of an n-digit number N in base r is defined as r" — N
This is the same as adding 1 to the (r — 1)’s complement

The 10’s complement of 2389 is 7610 + 1 = 7611

The 2’s complement of 101100 is 010011 + 1 = 010100

e Subtraction of unsigned n-digit numbers: M — N
0 Add M to the r’s complement of N — this results in
M+(@"=N)=M-N+1r"

o If M >N, the sum will produce an end carry r" which is discarded

0 If M <N, the sum does not produce an end carry and is equal to
r" — (N — M), which is the r’s complement of (N — M). To obtain the
answer in a familiar form, take the r’s complement of the sum and place a
negative sign in front.

Example: 72532 — 13250 = 59282. The 10’s complement of 13250 is 86750.

M = 72352
10’s comp. of N = +86750
Sum = 159282
Discard end carry = -100000
Answer = 59282

Example for M < N: 13250 — 72532 = -59282

M = 13250

10’s comp. of N = +27468

Sum = 40718

No end carry

Answer = -59282 (10’s comp. of 40718)

Example for X = 1010100 and Y = 1000011

X = 1010100
2’s comp. of Y =+0111101
Sum = 10010001
Discard end carry = -10000000
Answer X =Y = 0010001
Y = 1000011
2’s comp. of X = +0101100
Sum = 1101111
Computer Architecture 7

Chapter 3

No end carry
Answer = -0010001 (2’s comp. of 1101111)

Section 3.3 — Fixed-Point Representation

e Positive integers and zero can be represented by unsigned numbers
e Negative numbers must be represented by signed numbers since + and — signs are
not available, only 1’s and Q’s are
e Signed numbers have msb as 0 for positive and 1 for negative — msb is the sign bit
e Two ways to designate binary point position in a register
o Fixed point position
o Floating-point representation
e Fixed point position usually uses one of the two following positions
0 A binary point in the extreme left of the register to make it a fraction
0 A binary point in the extreme right of the register to make it an integer
0 In both cases, a binary point is not actually present
e The floating-point representations uses a second register to designate the position
of the binary point in the first register

e When an integer is positive, the msb, or sign bit, is 0 and the remaining bits
represent the magnitude
e When an integer is negative, the msb, or sign bit, is 1, but the rest of the number
can be represented in one of three ways
0 Signed-magnitude representation
o Signed-1’s complement representation
o0 Signed-2’s complement representation

e Consider an 8-bit register and the number +14
0 The only way to represent it is 00001110
e Consider an 8-bit register and the number -14
o0 Signed magnitude: 1 0001110
o Signed 1’s complement: 1 1110001
o Signed 2’s complement: 1 1110010
e Typically use signed 2’s complement

e Addition of two signed-magnitude numbers follow the normal rules
o0 If same signs, add the two magnitudes and use the common sign
o Differing signs, subtract the smaller from the larger and use the sign of the
larger magnitude
0 Must compare the signs and magnitudes and then either add or subtract
e Addition of two signed 2’s complement numbers does not require a comparison or
subtraction — only addition and complementation
0 Add the two numbers, including their sign bits
o Discard any carry out of the sign bit position
o All negative numbers must be in the 2’s complement form
o0 If the sum obtained is negative, then it is in 2’s complement form

Computer Architecture 8
Chapter 3

+6 00000110 -6 11111010

+13 00001101 +13 00001101
+19 00010011 +7 00000111
+6 00000110 -6 11111010
-13 11110011 -13 11110011
-7 11111001 -19 11101101

e Subtraction of two signed 2’s complement numbers is as follows
0 Take the 2’s complement form of the subtrahend (including sign bit)
0 Add it to the minuend (including the sign bit)
0 A carry out of the sign bit position is discarded

e An overflow occurs when two numbers of n digits each are added and the sum

occupies n + 1 digits

Overflows are problems since the width of a register is finite

Therefore, a flag is set if this occurs and can be checked by the user

Detection of an overflow depends on if the numbers are signed or unsigned

For unsigned numbers, an overflow is detected from the end carry out of the msb

For addition of signed numbers, an overflow cannot occur if one is positive and

one is negative — both have to have the same sign

e An overflow can be detected if the carry into the sign bit position and the carry
out of the sign bit position are not equal

+70 0 1000110 -70 1 0111010
+80 0 1010000 -80 1 0110000
+150 1 0010110 -150 0 1101010

e The representation of decimal numbers in registers is a function of the binary
code used to represent a decimal digit
e A 4-bit decimal code requires four flip-flops for each decimal digit
e This takes much more space than the equivalent binary representation and the
circuits required to perform decimal arithmetic are more complex
e Representation of signed decimal numbers in BCD is similar to the representation
of signed numbers in binary
e Either signed magnitude or signed complement systems
e The sign of a number is represented with four bits
o 0000 for +
o 1001 for —
e To obtain the 10°’s complement of a BCD number, first take the 9’s complement
and then add one to the least significant digit

e Example: (+375) + (-240) = +135

Computer Architecture 9
Chapter 3

0 375 (0000 0011 0111 1010)gco
+9 760 (1001 0111 0110 0000)scp
0 135 (0000 0001 0011 0101)gcp

Section 3.4 — Floating-Point Representation

The floating-point representation of a number has two parts
The first part represents a signed, fixed-point number — the mantissa
The second part designates the position of the binary point — the exponent
The mantissa may be a fraction or an integer
Example: the decimal number +6132.789 is
o Fraction: +0.6123789
0 Exponent: +04
o Equivalent to +0.6132789 x 10™
e A floating-point number is always interpreted to represent m x r
e Example: the binary number +1001.11 (with 8-bit fraction and 6-bit exponent)
o Fraction: 01001110
o0 Exponent: 000100
o Equivalent to +(.1001110), x 2**
e A floating-point number is said to be normalized if the most significant digit of
the mantissa is nonzero
The decimal number 350 is normalized, 00350 is not
The 8-bit number 00011010 is not normalized
Normalize it by fraction = 11010000 and exponent = -3
Normalized numbers provide the maximum possible precision for the floating-
point number

Section 3.5 — Other Binary Codes

e Digital systems can process data in discrete form only

e Continuous, or analog, information is converted into digital form by means of an
analog-to-digital converter

e The reflected binary or Gray code, is sometimes used for the converted digital
data

e The Gray code changes by only one bit as it sequences from one number to the
next

e Gray code counters are sometimes used to provide the timing sequences that
control the operations in a digital system

Computer Architecture 10
Chapter 3

TABLE 3-5 4-Bit Gray Code

Binary Decimal Binary Decimal
code equivalent code equivalent
0000 0 1100 8
0001 1 1101 9
0011 2 1111 10
0010 3 1110 11
0110 4 1010 12
0111 5 1011 13
0101 6 1001 14
0100 7 1000 15

e Binary codes for decimal digits require a minimum of four bits
e Other codes besides BCD exist to represent decimal digits

Computer Architecture
Chapter 3

TABLE 3-6 Four Different Binary Codes for the Decimal Digit

Decimal BCD Excess-3
digit 8421 2421 Excess-3 gray
0 0000 0000 0011 0010
1 0001 0001 0100 0110
2 0010 0010 0101 0111
3 0011 0011 0110 0101
4 0100 0100 0111 0100
5 0101 1011 1000 1100
6 0110 1100 1001 1101
7 0111 1101 1010 1111
8 1000 1110 1011 1110
9 1001 1111 1100 1010
1010 0101 0000 0000
Unused 1011 0110 0001 0001
bit 1100 0111 0010 0011
combi- 1101 1000 1101 1000
nations 1110 1001 1110 1001
1111 1010 1111 1011

e The 2421 code and the excess-3 code are both self-complementing
e The 9’s complement of each digit is obtained by complementing each bit in the

code

e The 2421 code is a weighted code
e The bits are multiplied by indicated weights and the sum gives the decimal digit

e The excess-3 code is obtained from the corresponding BCD code added to 3

Section 3.6 — Error Detection Codes

e Transmitted binary information is subject to noise that could change bits 1 to 0

and vice versa

e An error detection code is a binary code that detects digital errors during

transmission

e The detected errors cannot be corrected, but can prompt the data to be

retransmitted

e The most common error detection code used is the parity bit

Computer Architecture
Chapter 3

12

e A parity bit is an extra bit included with a binary message to make the total
number of 1’s either odd or even

TABLE 3-7 Parity Bit Generation

Message
xyz P(odd) P(even)

000
001
010
011
100
101
110
111

S = O OO
= OO O M E=O

e The P(odd) bit is chosen to make the sum of 1’s in all four bits odd
e The even-parity scheme has the disadvantage of having a bit combination of all
0’s
e Procedure during transmission:
0 At the sending end, the message is applied to a parity generator
The message, including the parity bit, is transmitted
At the receiving end, all the incoming bits are applied to a parity checker
Any odd number of errors are detected

O OO

e Parity generators and checkers are constructed with XOR gates (odd function)
e An odd function generates 1 iff an odd number if input variables are 1

Computer Architecture 13
Chapter 3

Figure 3-3 Error detection with odd parity bit.

Source Destination
x x
y y

[
ta

Error
indication
Parity generator Parity checker
Computer Architecture 14

Chapter 3

