Chapter 3 – Data Representation

Section 3.1 – Data Types

- Registers contain either data or control information
- Control information is a bit or group of bits used to specify the sequence of command signals needed for data manipulation
- Data are numbers and other binary-coded information that are operated on
- Possible data types in registers:
 - Numbers used in computations
 - o Letters of the alphabet used in data processing
 - Other discrete symbols used for specific purposes
- All types of data, except binary numbers, are represented in binary-coded form
- A number system of *base*, or *radix*, *r* is a system that uses distinct symbols for *r* digits
- Numbers are represented by a string of digit symbols
- The string of digits 724.5 represents the quantity

$$7 \times 10^{2} + 2 \times 10^{1} + 4 \times 10^{0} + 5 \times 10^{-1}$$

• The string of digits 101101 in the binary number system represents the quantity

$$1 \ge 2^5 + 0 \ge 2^4 + 1 \ge 2^3 + 1 \ge 2^2 + 0 \ge 2^1 + 1 \ge 2^0 = 45$$

- $(101101)_2 = (45)_{10}$
- We will also use the octal (radix 8) and hexidecimal (radix 16) number systems

$$(736.4)_8 = 7 \times 8^2 + 3 \times 8^1 + 6 \times 8^0 + 4 \times 8^{-1} = (478.5)_{10}$$

(F3)₁₆ = F x 16¹ + 3 x 16⁰ = (243)₁₀

- Conversion from decimal to radix *r* system is carried out by separating the number into its integer and fraction parts and converting each part separately
- Divide the integer successively by *r* and accumulate the remainders
- Multiply the fraction successively by *r* until the fraction becomes zero

Figure 3-1	Conversion	of decimal	41.6875	into	binary.
------------	------------	------------	---------	------	---------

Inte	eger = 41	Fraction = 0.6875
41	1	0.6875
20	1	2
10	0	1.3750
5	0	x 2
2	1	0.7500
1	0	x 2
0	1	1.5000
		$\frac{\mathbf{x} \ 2}{1.0000}$
(41	$)_{10} = (101001)_2$	$(0.6875)_{10} = (0.1011)_2$
	$(41.6875)_{10} = ($	101001.1011) ₂

- Each octal digit corresponds to three binary digits
- Each hexadecimal digit corresponds to four binary digits
- Rather than specifying numbers in binary form, refer to them in octal or hexadecimal and reduce the number of digits by 1/3 or 1/4, respectively

Figure 3-2 Binary, octal, and hexadecimal conversion.

	Decimal equivalent	Binary-coded octal	Octal number
ſ	0	000	0
	1	001	1
Code	2	010	2
for one	3	011	3
octal	4	100	4
digit	5	101	5
1	6	110	6
↓ ·	7	111	7
	8	001 000	10
	9	001 001	11
	10	001 010	12
	20	010 100	24
	50	110 010	62
	99	001 100 011	143
	248	011 111 000	370

TABLE 3-1 Binary-Coded Octal Numbers

Hexadecimal number	Binary-coded hexadecimal	Decimal equivalent	
0	0000	0	Î
1	0001	1	
2	0010	2	
3	0011	3	
4	0100	4	
5	0101	5	
6	0110	6	Code
7	0111	7	for one
8	1000	8	hexadecimal
9	1001	9	digit
Α	1010	10	
В	1011	11	
С	1100	12	
D	1101	13	
E	1110	14	
F	1111	15	Ļ
14	0001 0100	20	
32	0011 0010	50	
63	0110 0011	99	
F8	1111 1000	248	

TABLE 3-2 Binary-Coded Hexadecimal Numbers

- A binary code is a group of n bits that assume up to 2^n distinct combinations
- A four bit code is necessary to represent the ten decimal digits 6 are unused
- The most popular decimal code is called *binary-coded decimal* (BCD)
- BCD is different from converting a decimal number to binary
- For example 99, when converted to binary, is 1100011
- 99 when represented in BCD is 1001 1001

Decimal number	Binary-coded decimal (BCD) number	
0	0000	1
1	0001	-
2	0010	
3	0011	Code
4	0100	for one
5	0101	decimal
6	0110	digit
7	0111	
8	1000	
9	1001	Ļ
10	0001 0000	
20	0010 0000	
50	0101 0000	
99	1001 1001	
248	0010 0100 1000	

TABLE 3-3 Binary-Coded Decimal (BCD) Numbers

- The standard alphanumeric binary code is ASCII
- This uses seven bits to code 128 characters
- Binary codes are required since registers can hold binary information only

Character	Binary code	Character	Binary code
Α	100 0001	0	011 0000
В	100 0010	1	011 0001
С	100 0011	2	011 0010
D	100 0100	3	011 0011
E	100 0101	4	011 0100
F	100 0110	5	011 0101
G	100 0111	6	011 0110
н	100 1000	7	011 0111
I	100 1001	8	011 1000
J	100 1010	9	011 1001
K	100 1011		
L	100 1100		
Μ	100 1101	space	010 0000
N	100 1110	•	010 1110
0	100 1111	(010 1000
Р	101 0000	+	010 1011
Q	101 0001	\$	010 0100
R	101 0010	*	010 1010
S	101 0011)	010 1001
Т	101 0100	-	010 1101
U	101 0101	1	010 1111
v	101 0110	,	010 1100
W	101 0111	=	011 1101
х	101 1000		
Y	101 1001		
Z	101 1010		

TABLE 3-4 American Standard Code for Information Interchange (ASCII)

Section 3.2 – Complements

- Complements are used in digital computers for simplifying subtraction and logical manipulation
- Two types of complements for each base *r* system: *r*'s complement and (r-1)'s complement
- Given a number N in base r having n digits, the (r-1)'s complement of N is defined as $(r^n 1) N$
- For decimal, the 9's complement of N is $(10^n 1) N$
- The 9's complement of 546700 is 999999 546700 = 453299

- The 9's complement of 453299 is 999999 453299 = 546700
- For binary, the 1's complement of N is $(2^n 1) N$
- The 1's complement of 1011001 is 1111111 1011001 = 0100110
- The 1's complement is the true complement of the number just toggle all bits
- The r's complement of an n-digit number N in base r is defined as $r^n N$
- This is the same as adding 1 to the (r-1)'s complement
- The 10's complement of 2389 is 7610 + 1 = 7611
- The 2's complement of 101100 is 010011 + 1 = 010100
- Subtraction of unsigned *n*-digit numbers: M N
 - Add *M* to the *r*'s complement of *N* this results in $M + (r^n - N) = M - N + r^n$
 - If $M \ge N$, the sum will produce an end carry r^n which is discarded
 - If M < N, the sum does not produce an end carry and is equal to $r^n (N M)$, which is the *r*'s complement of (N M). To obtain the answer in a familiar form, take the *r*'s complement of the sum and place a negative sign in front.

Example: 72532 – 13250 = 59282. The 10's complement of 13250 is 86750.

М	= 72352
10's comp. of N	= +86750
Sum	= 159282
Discard end carry	<u>= -100000</u>
Answer	= 59282

Example for M < N: 13250 – 72532 = -59282

М	= 13250
10's comp. of N	= +27468
Sum	= 40718
No end carry	
Answer	= -59282 (10's comp. of 40718)

Example for X = 1010100 and Y = 1000011

Х	= 1010100
2's comp. of Y	=+0111101
Sum	= 10010001
Discard end carry	<u>= -10000000</u>
Answer X – Y	= 0010001
Y	= 1000011
2's comp. of X	= +0101100
Sum	= 1101111

No end carry Answer = -0010001 (2's comp. of 1101111)

Section 3.3 – Fixed-Point Representation

- Positive integers and zero can be represented by unsigned numbers
- Negative numbers must be represented by signed numbers since + and signs are not available, only 1's and 0's are
- Signed numbers have msb as 0 for positive and 1 for negative msb is the sign bit
- Two ways to designate binary point position in a register
 - Fixed point position
 - o Floating-point representation
- Fixed point position usually uses one of the two following positions
 - A binary point in the extreme left of the register to make it a fraction
 - A binary point in the extreme right of the register to make it an integer
 - In both cases, a binary point is not actually present
- The floating-point representations uses a second register to designate the position of the binary point in the first register
- When an integer is positive, the msb, or sign bit, is 0 and the remaining bits represent the magnitude
- When an integer is negative, the msb, or sign bit, is 1, but the rest of the number can be represented in one of three ways
 - Signed-magnitude representation
 - Signed-1's complement representation
 - o Signed-2's complement representation
- Consider an 8-bit register and the number +14
 - The only way to represent it is 00001110
- Consider an 8-bit register and the number -14
 - Signed magnitude: 1 0001110
 - Signed 1's complement: 1 1110001
 - Signed 2's complement: 1 1110010
- Typically use signed 2's complement
- Addition of two signed-magnitude numbers follow the normal rules
 - If same signs, add the two magnitudes and use the common sign
 - Differing signs, subtract the smaller from the larger and use the sign of the larger magnitude
 - Must compare the signs and magnitudes and then either add or subtract
- Addition of two signed 2's complement numbers does not require a comparison or subtraction only addition and complementation
 - Add the two numbers, including their sign bits
 - Discard any carry out of the sign bit position
 - All negative numbers must be in the 2's complement form
 - If the sum obtained is negative, then it is in 2's complement form

+6	00000110	-6	11111010
+13	00001101	+13	00001101
+19	00010011	+7	00000111
+6	00000110	-6	11111010
-13	11110011	<u>-13</u>	11110011
-7	11111001	-19	11101101

- Subtraction of two signed 2's complement numbers is as follows
 - Take the 2's complement form of the subtrahend (including sign bit)
 - Add it to the minuend (including the sign bit)
 - o A carry out of the sign bit position is discarded
- An *overflow* occurs when two numbers of n digits each are added and the sum occupies n + 1 digits
- Overflows are problems since the width of a register is finite
- Therefore, a flag is set if this occurs and can be checked by the user
- Detection of an overflow depends on if the numbers are signed or unsigned
- For unsigned numbers, an overflow is detected from the end carry out of the msb
- For addition of signed numbers, an overflow cannot occur if one is positive and one is negative both have to have the same sign
- An overflow can be detected if the carry into the sign bit position and the carry out of the sign bit position are not equal

+70	0 1000110	-70	1 0111010
+80	0 1010000	<u>-80</u>	1 0110000
+150	1 0010110	-150	0 1101010

- The representation of decimal numbers in registers is a function of the binary code used to represent a decimal digit
- A 4-bit decimal code requires four flip-flops for each decimal digit
- This takes much more space than the equivalent binary representation and the circuits required to perform decimal arithmetic are more complex
- Representation of signed decimal numbers in BCD is similar to the representation of signed numbers in binary
- Either signed magnitude or signed complement systems
- The sign of a number is represented with four bits
 - $\circ \quad 0000 \ for +$
 - o 1001 for –
- To obtain the 10's complement of a BCD number, first take the 9's complement and then add one to the least significant digit
- Example: (+375) + (-240) = +135

0	375	(0000	0011	0111	1010) _{BCD}
+9	760	(1001	0111	0110	0000) _{BCD}
0	135	(0000	0001	0011	0101) _{BCD}

Section 3.4 – Floating-Point Representation

- The floating-point representation of a number has two parts
- The first part represents a signed, fixed-point number the mantissa
- The second part designates the position of the binary point the *exponent*
- The mantissa may be a fraction or an integer
- Example: the decimal number +6132.789 is
 - Fraction: +0.6123789
 - Exponent: +04
 - Equivalent to $+0.6132789 \times 10^{+4}$
- A floating-point number is always interpreted to represent $m \ge r^e$
- Example: the binary number +1001.11 (with 8-bit fraction and 6-bit exponent)
 - o Fraction: 01001110
 - o Exponent: 000100
 - Equivalent to $+(.1001110)_2 \times 2^{+4}$
- A floating-point number is said to be *normalized* if the most significant digit of the mantissa is nonzero
- The decimal number 350 is normalized, 00350 is not
- The 8-bit number 00011010 is not normalized
- Normalize it by fraction = 11010000 and exponent = -3
- Normalized numbers provide the maximum possible precision for the floatingpoint number

Section 3.5 – Other Binary Codes

- Digital systems can process data in discrete form only
- Continuous, or analog, information is converted into digital form by means of an analog-to-digital converter
- The reflected binary or *Gray code*, is sometimes used for the converted digital data
- The Gray code changes by only one bit as it sequences from one number to the next
- Gray code counters are sometimes used to provide the timing sequences that control the operations in a digital system

Binary code	Decimal equivalent	Binary code	Decimal equivalent
0000	0	1100	8
0001	1	1101	9
0011	2	1111	10
0010	3	1110	11
0110	4	1010	12
0111	5	1011	13
0101	6	1001	14
0100	7	1000	15

TABLE 3-5 4-Bit Gray Code

• Binary codes for decimal digits require a minimum of four bits

• Other codes besides BCD exist to represent decimal digits

Decimal digit	BCD 8421	2421	Excess-3	Excess-3 gray
0	0000	0000	0011	0010
1	0001	0001	0100	0110
2	0010	0010	0101	0111
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1100
6	0110	1100	1001	1101
7	0111	1101	1010	1111
8	1000	1110	1011	1110
9	1001	1111	1100	1010
	1010	0101	0000	0000
Unused	1011	0110	0001	0001
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1000
nations	1110	1001	1110	1001
	1111	1010	1111	1011

TABLE 3-6 Four Different Binary Codes for the Decimal Digit

- The 2421 code and the excess-3 code are both *self-complementing*
- The 9's complement of each digit is obtained by complementing each bit in the code
- The 2421 code is a *weighted code*
- The bits are multiplied by indicated weights and the sum gives the decimal digit
- The excess-3 code is obtained from the corresponding BCD code added to 3

Section 3.6 – Error Detection Codes

- Transmitted binary information is subject to noise that could change bits 1 to 0 and vice versa
- An *error detection code* is a binary code that detects digital errors during transmission
- The detected errors cannot be corrected, but can prompt the data to be retransmitted
- The most common error detection code used is the *parity bit*

• A parity bit is an extra bit included with a binary message to make the total number of 1's either odd or even

Message xyz	P(odd)	P(even)
000	1	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	0	1

 TABLE 3-7
 Parity Bit Generation

- The P(odd) bit is chosen to make the sum of 1's in all four bits odd
- The even-parity scheme has the disadvantage of having a bit combination of all 0's
- Procedure during transmission:
 - At the sending end, the message is applied to a *parity generator*
 - The message, including the parity bit, is transmitted
 - At the receiving end, all the incoming bits are applied to a parity checker
 - Any odd number of errors are detected
- Parity generators and checkers are constructed with XOR gates (odd function)
- An odd function generates 1 iff an odd number if input variables are 1

Figure 3-3 Error detection with odd parity bit.