

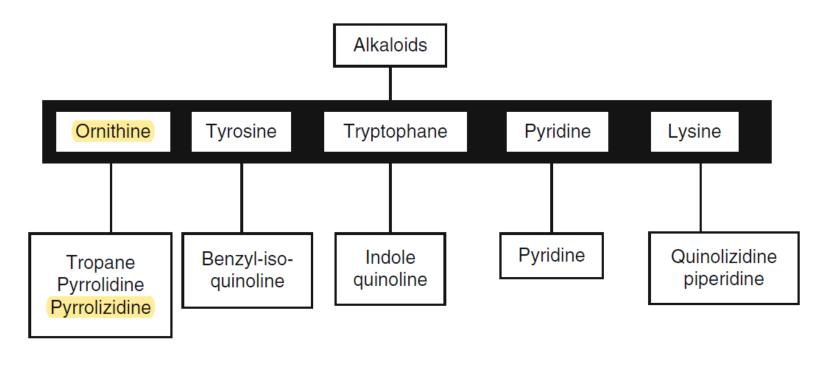
# Pharmacognosy and Phytochemistry

## **Alkaloids-Part 4**

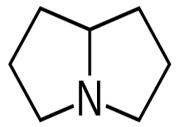
### **B. Pharm. Semester-1** Course Code: 0510221; Session: 2022-2023

#### **Dr. BALAKUMAR CHANDRASEKARAN**

**Professor-Faculty of Pharmacy Philadelphia University-Jordan** 


### **Learning Outcomes**

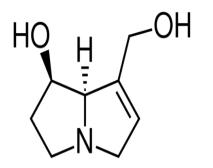
### At the end of this lesson, students will be able to explain Pyrrolizidine alkaloids: Retronecine, Echinatine, Dicotaline and Indicine-*N*-oxide


**Tropane alkaloids**: Hyoscyamine, atropine, scopolamine, and cocaine. Traditional Herb: Mandrake

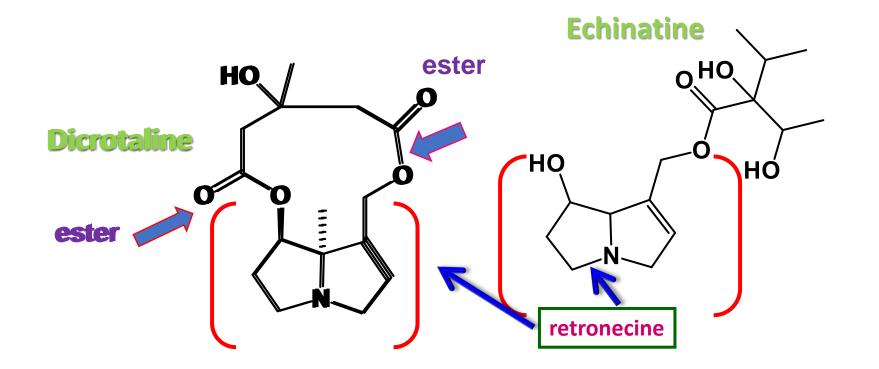
# Objective

The objective of this course is to give to the students of pharmacy the basic knowledge about the alkaloids as major phytoconstituents.




Structure of Pyrrolizidine

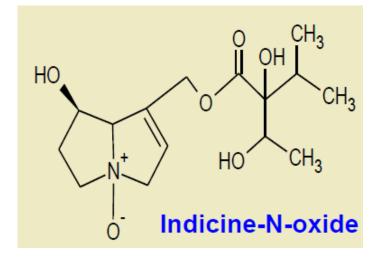



- □Pyrrolizidine alkaloids (PAs), sometimes referred to as necine bases, are based on the structure of pyrrolizidine.
- □Pyrrolizidine alkaloids are produced by plants as a defense mechanism against insect herbivores.
- □More than 660 PAs and PA N-oxides have been identified in over 6,000 plants, and about half of them exhibit hepatotoxicity.
- They are found frequently in plants in the Boraginaceae, Asteraceae, Orchidaceae
- and Fabaceae families; less frequently in the Convolvulaceae and Poaceae, and in at
- least one species in the Lamiaceae.

**Retronecine**: It is a pyrrolizidine alkaloid found in the family Boraginaceae. It is the most common central core for other pyrrolizidine alkaloids. The necic acids are mono- or di-carboxylic acids in the range of C3-C7 which may contain additional double bonds and hydroxyl groups. Some are mono esters or diesters.

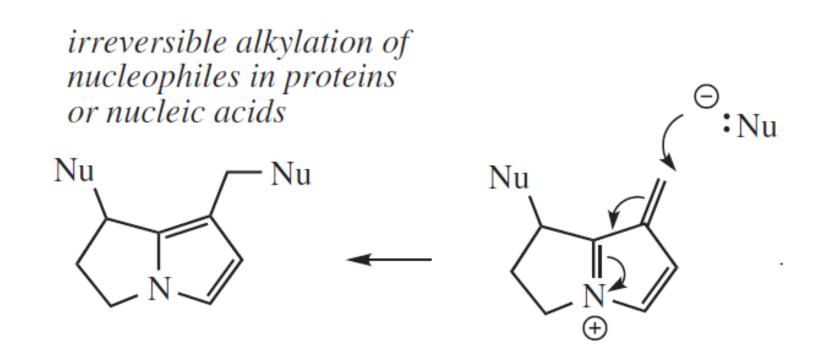
### **Structure of Retronecine**




Echinatine (contains a monoester) and Dicrotaline (contains cyclic di-ester)



**Indicine-N-oxide**: is a natural pyrrolizidine alkaloid with antineoplastic properties (active against a number of tumors in mice).


It is present in the plant *Heliotropium indicum* showed promising cytotoxic activity in various tumor models.

The compound exhibited severe toxicity to hepatocytes and bone marrow cells.



### **Pyrrolizidine alkaloids: Mechanism of toxicity**

They are potent alkylating agents and react with suitable cell nucleophiles, e.g. nucleic acids and proteins.



## **Tropane alkaloids**

| S.<br>No. | Name of the<br>Tropane Alkaloid | <b>Botanical Source</b> | Family          |
|-----------|---------------------------------|-------------------------|-----------------|
| 1         | Hyoscyamine                     | Datura stramonium       | Solanaceae      |
| 2         | Atropine                        | Atropa belladonna       | Solanaceae      |
| 3         | Hyoscine or<br>Scopolamine      | Hyoscyamus niger        | Solanaceae      |
| 4         | Cocaine                         | Erythroxylum coca       | Erythroxylaceae |

### **Tropane alkaloids: Solanaceae**

Thorn Apple, Stramonium, Jimson Weed (Datura stramonium)



Deadly nightshade (Atropa belladonna)



Henbane (Hyoscamus niger)



All these three plant species have **parasympatholytic** activity. They may be considered as **anticholinergics**, acting upon the muscarine receptor. All of them contain (-)-hyoscamine and (-) hyoscine.

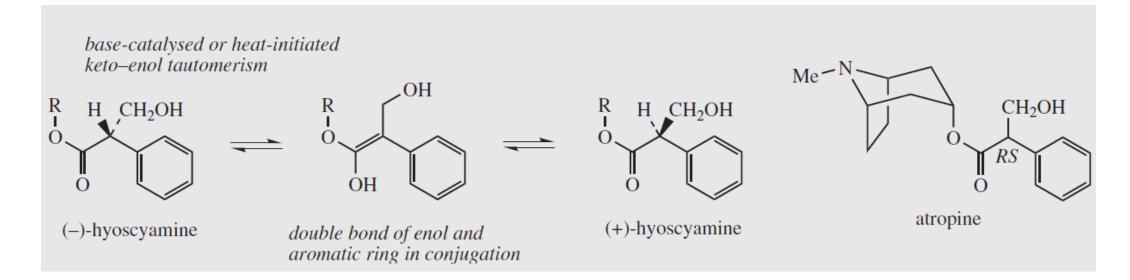
## **Tropane alkaloids: Pharmacological Uses**

All these three plant species have parasympatholytic activity, considered as **anticholinergics**.

1-Decreases saliva secretion and GIT secretions so used in pre-operative.

2-Decrease motility of smooth muscles so used as antispasmodics.

- 3-Stimulate respiratory system.
- 4- Have a mydriatic effect (cause dilatation of the eye pupil).
- 5-An antidote to organophosphorus poisoning.


6-Hyoscine has a more central effect, so it is used as a sedative and hypnotic.

7-Hyoscine is also used as antiemetic.

## **Tropane alkaloids: Hyoscyamine**

Hyoscyamine is the major natural alkaloid with negative optical rotation
(1- form) [(-)-hyoscyamine that is racemized to atropine].
Because the α-carbon is asymmetric, so two stereoisomers are possible.
During the extraction, hyoscyamine racemizes to the optically inactive dl Atropine.

□Both hyoscyamine and atropine are composed of tropine base and tropic acid.



## **Tropane alkaloids: Atropine**

Atropa belladonna is toxic, belladonna berries (2 to 5 berries can kill a child, 10-20 to kill adults).

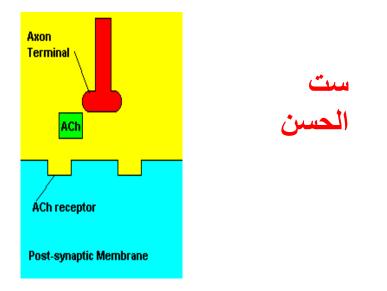
□Toxic symptoms after ingestion of Belladonna are:

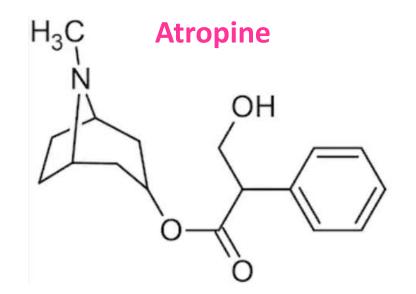
- \*red face, dry mouth, intense thirst
- substantial increase of heart rate, dilation of pupils (mydriasis)
- ✤ nausea, hallucinations, delirium, fatigue, hyperthermia,
- $\boldsymbol{\bigstar}$  agitation and loss of motor coordination, coma
- ✤ death by respiratory failure

□Atropine is a mixture of (+) and (-)-hyscyamaine.






### **Tropane alkaloids: Atropine**


 $\alpha$ -tropanol (tropane-3  $\alpha$ -ol) gives **atropine**, while  $\beta$ -tropanol gives **pseudoatropine**.





#### Atropa belladonna (Solanaceae)





### **Pharmacological actions of Atropine**

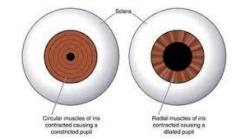
Atropine is a **cholinergic-blocking agent**, it occupies the postsynaptic receptorsite, and prevents the normal neurotransmitters (acetylcholine) from acting, so atropine has the following pharmacological actions:

a- Antispasmodic: It relaxes the smooth muscles of intestine.

b- Mydriatic: It is used in ophthalmology during examinations of eyes.

c- In small doses, atropine is a smooth stimulant to respiration and myocardium.

d-Locally, atropine ceases pain (slight paralysis of nerve endings)


e- It is used pre-operative to decrease the salivation, secretions of GIT

f- It is an **antidote** against the poisoning with the following agents: Physostigmine, neostigmine, pilocarpine, organophosphorus insecticides and muscarine.

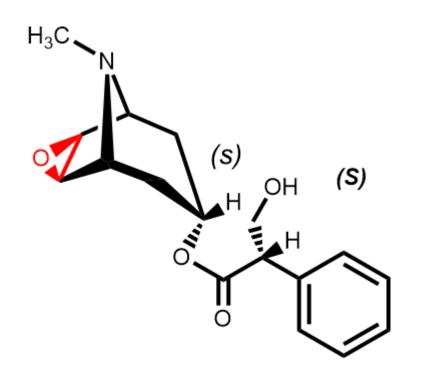
### **Pharmaceutical Products of Atropine**



**Atropine eyedrops :** To **induce mydriasis during examinations of eye**.






Ipratropium bromide Atrovent inhaler Anticholinergic bronchodilator



Atropine Injection (preoperative or as antidote)

### **Tropane alkaloids: Hyoscine or Scopolamine**

(-)-Hyoscine or Scopolamine



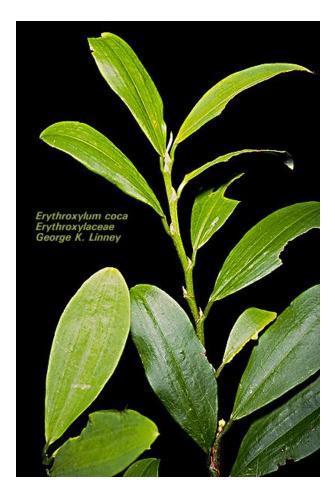
*Hyoscyamus niger* (البنج الأسود), henbane, black henbane or stinking nightshade) and *Hyoscyamus muticus* (البنج المصري) which is indigenous to Egypt (Solanaceae).

They are esters of tropic acid and alcoholic base tropanol which have either  $\alpha$ - or  $\beta$ - configuration

## **Tropane alkaloids: Hyoscine or Scopolamine**



It is selectively sedative to the CNS, and it quiets excitability especially in the insane patients.


It is used in motion sickness (nausea caused by motion, especially during travelling).

### **Tropane alkaloids: Cocaine**

- Cocaine is obtained from the leaves of the shrub *Erythroxylum coca* (Bolivian coca, 1%), or *E, truxillens* (Peruvian coca, 2%); Family: Erythroxylaceae.
   Cocaine is quickly absorbed from the mucous membranes and is used only topically as anesthetic in ophthalmology (salt 1%).
- $\Box$  50 mg of cocaine lead to euphoria and hallucinations.
- Larger doses lead to cerebral cramps, hyperirritability and paralysis and makes drug-addiction.

### **Tropane alkaloids: Cocaine**

#### *Erythroxylum coca* (Bolivian or Huanuco Coca)



*Erythroxylum novogranatense var. truxillense* (Peruvian or Truxillo Coca)



Erythroxylum novogranatense var. novogranatense



### **Tropane alkaloids: Cocaine**

□ Cocaine is the major alkaloid in Coca leaves, Cocaine is diester alkaloid.

□ Heating at 160 °C in conc. HCl leads to hydrolyses of cacaine to MeOH, benzoic acid and ecogonine base.

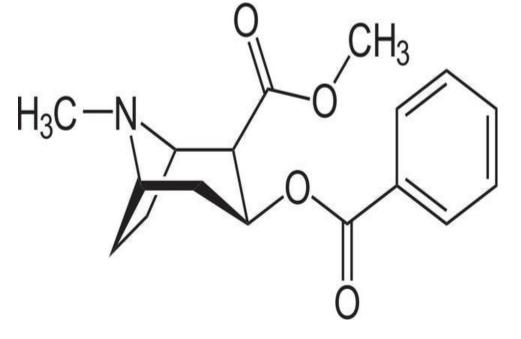
□Main Alkaloids are:

1- Cocaine.

2- Cinnamylcocaine.

3. Truxilline.

The base for Coca Alkaloids is called "Ecogonine"




### **Tropane alkaloids: Cocaine: Structure and Uses**

□ Cocaine is used as local anesthetic.

□ Cocaine has a CNS stimulant activity.

 $\Box$  It is one of the widely abused drugs.



**Cocaine:** benzoylmetheylecogonine

### **Pharmacological actions of Cocaine**

- 1. Local anesthetic blocks ion channels in neuron membranes.
- 2. **Sympathomimetic** acts as an adrenergic stimulant by noradrenaline reuptake blockade. It doesn't act directly on adrenergic receptors, but indirectly by inhibition of Adrenaline reuptake in the synaptic cleft.
- 3. Peripherally causes hyperthermia, mydriasis, and vasoconstriction, which contributes to increasing blood pressure.
- 4. At low doses, it increases the heart rate, at high doses, it causes cardiac arrest.
- 5. In CNS, it produces a sensation of euphoria with intellectual stimulation and other effects.

## **Symptoms of higher Use of Cocaine**

- Cocaine hydrochloride is generally taken by the intranasal route, less often by iv injection.
- 2. Cocaine intake causes euphoria, intellectual stimulation, hyperactivity, a feeling of hyperlucidity, and an acceleration in the elaboration of ideas.
- 3. Its over use produces the decrease in fatigue, insomnia, anorexia, and increased talkativeness. With chronic use, mental confusion and depression.
- 4. Prolonged use leads to delusions (compulsive scratching) parasitosis and hallucinations.
- 5. The most serious complications are cardiovascular such as induction of coronary insufficiency.
- 6. Massive overdose may lead to coma, convulsions and cardiac alterations. 2

## Synthetic preparations related to Cocaine

Safer and less toxic anesthetics, related to Cocaine are:-

- 1. Benzocaine a topical anesthetic with short duration of action.
- 2. Levobupivacaine (S-enantiomer) and bupivacaine (racemic form) are most widely used local anesthetics in surgery due to their long duration of action.
- 3. Tetracaine local anesthetics used in ophthalmology.
- 4. Lidocaine the most widely used local anesthetic.



Oragel Benzocaine



Lidocaine injection

### **Traditional Herb: Mandrake**

### Mandragora officinarum & Mandragora autumnalis

- *M. officinarum* (Solanaceae) is limited to small areas of northern Italy and the coast of former Yugoslavia.
- *M. autumnalis*, the autumn mandrake is native to the Medditerranean countries, like Palestine, Jordan, Tunisia, Turkey, Lebanon, Syria, Morocco, ... etc.







### **Traditional Herb: Mandrake**



### REFERENCES

**Textbooks:** 

- 1. Trease And Evans Pharmacognosy, 16<sup>th</sup> Edition, 2019, Author: William C Evans, Publisher: Elsevier, ISBN: 978-8131261187.
- 2. Textbook of Pharmacognosy and Phytochemistry 2<sup>nd</sup> Edition, 2019, Authors: B. Shah, A. N. Kalia, Publisher: Elsevier, ISBN: 978-978-9386217738.
- 3. Medicinal Natural Products: A Biosynthetic Approach, 2<sup>nd</sup> Edition, 2002, Author: Paul M Dewick, Publisher: John Wiley and Sons Ltd, ISBN: 0471496405.
- **Supplementary book:**

Fundamentals of Pharmacognosy and Phytotherapy. A Guide for Health Care Professionals by Carol A. Newal, Linda A. Anderson and J. David Phillipson. (2010). the Pharmaceutical Press, London, UK; ISBN: 0 85369-474-5.