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14.1 Introduction
The science of pharmaceutics is concerned with converting a novel molecular

entity (NME) into a drug in the appropriate dosage form for usage by patients [1].

The traditional method of research involves preformulation, formulation, and

in vivo investigation based on trial-and-error experiments. This method is time-

consuming, expensive, and less effective [2]. Wang et al. (2021) found that it

takes approximately 15 years and up to 2558 million dollars to introduce a single

NME to the market [2]. Computational pharmaceutics, which applies computers

to pharmaceutical medication delivery and modeling (computer simulation), has

emerged. This new discipline is less time- and money-consuming than the tradi-

tional approach [1]. The computer simulation can model difficult systems which

may cost a lot of money and may be complex by providing multiscale lenses to

the pharmaceutical scientists, showing all the chemical, physical, and mathemati-

cal information that provides the details of chemical stability, formulation, poly-

morphism, and the precise medicine [2].

Artificial intelligence (AI), molecular dynamics (MD), which is a simulation

used to calculate the motion of atoms or molecules, and physiologically based

pharmacokinetics modeling (PBPK), which is a mathematical modeling of absorp-

tion, distribution, metabolism, and excretion, all depend on computational pharma-

ceutics. Quantum mechanics (QM) is a theory that describes the physical properties

of nature at atomic and subatomic scale particles by the Schrodinger equation.

By using computational methods, we speed up the development, save time

and money, and modify the formula to get the optimal drug with good solubility,

absorption, stability, and pharmacological effect.

Different computational approaches are now used in nearly all areas of phar-

maceutics. For example [1]:

1. Cyclodextrins: which are used in drug delivery of poorly solubilized drugs.
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2. Polymeric-based micellar vehicle: for delivery of hydrophilic and lipophilic

drugs.

3. Biological lipid membrane: such as liposome in drug delivery for cancer.

4. Proteins and peptide drugs.

5. Inorganic nanoparticle: delivery of drugs and genes.

6. Physiology-based pharmacokinetics: preclinical drug development and

formulation development.

14.2 History of computers in pharmaceutical research and
development

Computers were not necessary for scientists or any manager of a company a

few years ago, but now they can perform multiple complex jobs at once, such as

transporting, storing, and organizing information, they are very necessary. With

time, scientists discovered that there is a correlation between a molecule’s chemi-

cal structure and its calculable molecular properties, which will enable the predic-

tion of the molecule structure [3]. In World War II, a nuclear bomb simulation

was one of the first uses of computers [1]. Pharmaceutical businesses started using

computers in the 1940s, but they were only utilized for payroll and accounting, not

for science [3]. Innovative studies tackled the issue of connecting electrical struc-

ture and biological activity in the 1950s. One of the pioneering contributions to

computational drug research was made by Lilly in the early 1960s when they dis-

cussed the relationship between the estimated electrical structure of cephalosporins

and their antibacterial activity. About all computational chemists worked in acade-

mia rather than industry in 1960. One segment of the industry consisted of students

from such academic facilities, while another segment featured chemists trained

in utilizing computers (X-ray crystallographers) for drug discovery. Drug develop-

ment in the early 1960s was a trial-and-error process. Plants with medicinal charac-

teristics and soil microbes were the two primary sources of therapeutic chemicals

at that time [4]. A heated argument between computational and medicinal chemists

was going on at the time. While medicinal chemists do not think it could work,

computational chemists thought it was easier computationally to change a structure

(to substitute atoms or add substituents) [5]. The prospect of computations on bio-

molecules and macromolecules was sparked by a book written in 1963 by Bernard

and Alberte Pullman of Paris, France. A simplified mathematical representation of

the function played by molecular descriptors in defining biological activity was

developed in 1964 when the subject of quantitative structure�activity relationship

(QSAR) was studied. The main source was classical medicinal chemistry. The che-

mists laboriously read books and patents while applying their creativity and exper-

tise to produce therapeutically useful compounds, which were then screened by

microbiologists and biochemists [6]. These traditional methods demanded time and
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money, and they occasionally lacked accuracy. Abbott, Schering-Plough, Upjohn,

and Dow Chemicals are among the companies that have taken the initiative in

looking at the use of computers in drug research. When it discovered a connection

between the estimated electronic structure of the beta-lactam ring in cephalosporins

and their antibacterial activity, The Lilly Company produced the first significant

development in computational drug discovery [7]. Following the IBM 360 model,

the 370 series was released, and at that time, input devices gradually changed from

punch cards to dumb terminals. For molecular mechanics, the well-known MMPI

program was still in use, and FORTRAN software was still used. Then, the

pharmaceutical industry began transition from using only quantum physics to using

molecular mechanics, QSAR, and statistics [8]. But in the background, a conflict

broke out between computational and medicinal chemists. Lilly initiated communi-

cation between the two teams and organized a number of workshops where medici-

nal chemists could learn how to calculate molecules using computational methods.

Merck substituted a comparable workshop in its place [9]. Two databases—the

Protein Databank (PDB) and the Cambridge Structural Database (CSD) were created

in the early 1970s [10]. This provided computational chemists with more medicinal

compounds to study [11]. In 1984 the Apple Macintosh made its debut, providing

tiny laboratories with word processing, graphics, and database administration. This

synthetic medicinal chemist has begun to value computational methods [12].

Professor Allinger established the Journal of Computational Chemistry in the

1980s [13]. There were three advancements during this time. First, the develop-

ment in communication has made it possible for computers to interact with one

another and with huge databases. Second, the creation of tools like ChemDraw

in software. Thirdly, using a ball and stick or space-filling model, it is possible to

explore the compound in its 3D structure. With all of these developments, an

increasing number of businesses adopt the computer-aided molecular design pro-

cess [14]. Computers first appeared in scientific breakthroughs around the middle

of the 19th century. In order to anticipate biological activity, it is utilized to dis-

cover QSAR, which is a statistical investigation of a relationship between molecu-

lar structure and their descriptor [15]. From the mysterious IBM mainframes to

the VAX computers, the computational chemists moved their computer programs.

Merck released their system in 1980 after growing their modeling division into

one of the largest in the world. For molecular modeling, 25% of the 48 companies

used SYBYL from Tripos Associates, while 15% used CHEMGRAF from

Chemical Design Ltd. MDL, a leader in the field of chemical structure manage-

ment at the time and based in Hayward, California, provided a program called

MACCS for handling databases of data on synthetic compounds [16]. X-PLOR,

a program for data refinement that includes a force field, was inspired by

CHARMM in the 1980s [17]. The Floating-Point System (FPS) had been pur-

chased by several pharmaceutical businesses. An effective technique for precisely

determining the binding energy between ligands and macromolecular targets is the

free energy perturbation (FEP) hypothesis [18]. During this time, the idea that
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computations constituted the “third way” of science was occasionally heard.

Supercomputers started to appear in the 1990s, which increased the importance of

computational drug discovery [19]. So, what a computer can do [20]:

1. Identify if the new compound can bind and fit to the protein receptor.

2. Predicts possible side effects which is a very substantial when known as early

as possible to reduce the cost and time.

3. Identify drug candidate that can bind to different receptors in the body at the

same time for better treatment of a certain condition.

For molecular modeling and simulations, programs like SYBYL (Tripos),

Insight/Discover (BIOSYM), and Quanta/CHARMm (Polygen, subsequently

Molecular Simulations Inc., and now Accelrys) were well-liked worldwide [21].

The California business known as BioDesign later changed its name to Molecular

Simulations Inc. (MSI). Merck developed a force field from scratch, which they

refer to as the Merck Molecular Force Field (MMFF94). ISIS (Integrated Scientific

Information System), a new version of MDL’s compound management software,

was released in 1991. Researchers were given amazing new tools for drug discov-

ery via MACCS and then ISIS. Although docking technology has been around

since the 1980s, it became increasingly common for crystal structures of pharma-

ceutically important proteins to be solved and used for ligand design in the 1990s.

Around 1993, combinatorial chemistry approach was executed wherein a library

of compounds can be synthesized at a time. A chemist might easily manufacture

2000 compounds each week with combi-chem [22]. Combi-chem and high-

throughput screening (HTS) created a lot of data, which required management

and analysis. Consequently, the importance of computers and the study of infor-

matics increased. Pharmaceutical businesses’ intranets are set up with assistance

from computational chemists and information technology (IT) experts. The hard-

ware condition kept changing. Speed, random-access memory (RAM) capacity,

and hard drive size of personal computers all increased [23]. The now-famous

“Rule of Five” by Lipinski was first presented in 1997 and was quickly embedded

in database mining operations at every business. The phrase “computer-aided

drug design” (CADD) was coined, and the Lilly Company began compiling its

successes in 1997 [24]. The medications that were discovered using CADD tech-

nology are shown in Table 14.1.

14.3 Statistical modeling in pharmaceutical research and
development

Major challenge for the pharmaceutical industry in drug discovery and develop-

ment: Reduction of costs and time from discovery to market. The process of dis-

covery and development of new drugs has been drawn to highlight the pivotal

role that models (simplified mathematical descriptions of real-life mechanisms)

396 CHAPTER 14 Computational pharmaceutics



play in many R&D activities. Statistical models are used to know and predict

the efficacy of a drug for a specific individual. This is done by recognizing the

group of people who responds well to the drug tested and show no or minimal

side effects, as people respond differently to a certain drug due to interindividual

variation. The data obtained from this study is undergone a statistical analysis to

predict the drug efficacy [25]. The typical and standard way to discover a new

drug is by trial and error, as it was mentioned earlier, which is expensive and

time consuming. The development of the pharmaceutical models, which improves

the quality, reduces the cost and the time needed to discover a new drug, was a

breakthrough [26]. Modeling concept is used to translate the already known prop-

erties about some hypothesis into a mathematical representation to simplify the

data represented. The goal of statistical modeling is to develop a system, which

can predict the response to the variables input in the future, elicit information

about the connection between input variables and the need to response variables,

and fully understand the mechanism that created the data or going to create

this data. Descriptive modeling is used if the aim is only to obtain rational data

without the need to understand the main phenomenon and this is beneficial in

distinguishing between alternative assumptions. Mechanistic modeling’s aim is

to understand the mechanism of action, and this is done through cooperation

between scientists, field specialists, and mathematicians or statisticians, by trans-

lating the scientific information into a mathematical model. The research areas of

pharmacokinetics/pharmacodynamics (PK/PD) models are built to characterize

Table 14.1 Drugs discovered through computer-aided drug design (CADD)
technology.

Generic
name

Brand
name

Year approved in the
United States

Discovery
assisted by

Activity

Norfloxacin Noroxin 1983 QSAR Antibacterial
Losartan Cozaar 1994 CADD Antihypertensive
Dorzolamide Trusopt 1995 CADD/SBDD Antiglaucoma
Ritonavir Norvir 1996 CADD Antiviral
Indinavir Crixivan 1996 CADD Antiviral
Donepezil Aricept 1997 QSAR Anti-Alzheimer’s
Zolmitriptan Zomig 1997 CADD Antimigraine
Nelfinavir Viracept 1997 SBDD Antiviral
Amprenavir Agenerase 1999 SBDD Antiviral
Zanamivir Relenza 1999 SBDD Antiviral
Oseltamivir Tamiflu 1999 SBDD Antiviral
Lopinavir Aluviran 2000 SBDD Antiviral
Imatinib Gleevec 2001 SBDD Antineoplastic
Erlotinib Tarceva 2004 SBDD Antineoplastic
Ximelagatran Exanta 2004 SBDD Anticoagulant
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the kinetics and action of new compounds, designing new experiments and opti-

mizing drug dosage. Models are also developed in other areas, like medicinal

chemistry with QSAR-related models. These can all be defined as mechanistic

models and are very useful. But in these models, the stochastic noise inherent

in the data, the variability that makes biology different from physical sciences, is

not as a general rule appropriately taken into account. Hence, many models of a

different type are currently used in the biological sciences. These can be envis-

aged as complicated (mathematical) extensions of ways to analyze results. This is

the area currently occupied by most statisticians. Using empirical models, univer-

sally applicable, whose basic purpose is to appropriately represent the noise, but

not the biology or the chemistry, statisticians give whenever possible a denoised

picture of the results. In clinical trials, the statistician is consulted up front to help

in designing the experiment, to ensure that the necessary denoising process. This

is the area of empirical models. The dividing line between empirical models and

mechanistic models is not clear. Mechanistic models are usually based on chemi-

cal or biological knowledge.

These models are considered as interpretable or meaningful, but their inherent

nature (nonlinearity, high number of parameters) poses other challenges, particu-

larly once several sources of noise are also to be adequately modeled. For these

reasons, empirical approaches have been largely preferred in the past. Today,

however, the combination of mathematics, statistics, and computing is widely

used. The way to optimally conceive an experiment depends on the a priori model

you have. If you have very little a priori usable information (i.e., a poor model),

then you will need many experiments and samples, making your practice not very

cost effective. This is a bonus few realize from having models supporting the

cycle: the cost, speed, and effectiveness. Modeling is the keystone to installing a

virtuous cycle in the pharmaceutical industry, in order to successfully overcome

approaching hurdles. There are two cultures (data modeling culture and algorith-

mic modeling culture) in the use of statistical modeling to reach conclusions from

data. Data modeling culture assumes that the data are generated by a given sto-

chastic data model, while algorithmic modeling culture uses algorithmic models

and treats the data mechanism as unknown.

14.4 Computational modeling of drug disposition
The number of potential drugs that are being synthesized in recent years has

increased markedly. These drugs may be not effective, have poor target binding

due to poor absorption, inappropriate distribution, or rapid metabolism. The drug

discovery has focused on efficacy and selectivity against the biological target.

As a result, almost half of the medication candidates in phase II and phase III

clinical trials are unsuccessful due to unfavorable drug pharmacokinetics character-

istics, such as unsatisfactory drug absorption, distribution, metabolism, excretion,
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and toxicity (ADMET). In order to cut costs, early in the drug discovery process,

in vitro evaluation of ADMET characteristics has become popular. In order to

replicate membrane permeability and estimate in vivo absorption, Caco-2, and

Madin-Darby Canine Kidney (MDCK) cell monolayers are frequently utilized. So,

it is essential to screen their ADME characteristics to ensure the drug is effective

and safe. Screening ADME in vitro is not cost-effective and cannot meet the

increasing number of new drugs. Because of these in vitro findings, in silico mod-

els can now be trained and used to predict the ADMET characteristics of drugs

even before they are ever manufactured. There have been significant developments

in in silico modeling algorithms and a proliferation of computational programs

that model drug ADMET characteristics. This urged pharmaceutical companies to

investigate in silico prediction of pharmacokinetics data [27]. A number of com-

mercial ADMET modeling programs were released and gathered (Table 14.2).

Simulation models have succeeded to predict [28]:

1. Extent and rate of absorption

2. Plasma concentration-time profile

3. Metabolic stability

4. Volume of distribution

5. Effect of drug�drug interactions

The tools that are available to predict ADME are filters, models, and simula-

tions. Filters are a set of rules that are useful at very early stages (building of

virtual libraries). Models are employed for the lead optimization to reduce the

Table 14.2 List of commercial absorption, distribution, metabolism,
excretion, and toxicity (ADMET) modeling softwares.

Software Developer Applications

ADMET Predictor Simulation Plus, Inc. ADMET prediction
StarDrop Optibrium, Ltd. ADMET prediction
ADME Suite Advanced chemistry

development, Inc.
ADMET prediction

Toxsuite Advanced chemistry
development, Inc.

Toxicity prediction

ADMEWORKS
Predictor

FujitsuFQS ADMET prediction

QikProp Schrodinger, Inc. ADMET prediction
MetaDrug GeneGo, Inc. Metabolism and ADMET

prediction
TOPKAT Accelrys, Inc. Toxicity prediction
PASS Russian Academy of Medical

Sciences
Toxicity prediction

METAPC CASETOX Multicase, Inc. Metabolism and ADMET
prediction
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number of candidates. Simulation is useful in the selection of clinical candidates

[29]. Fig. 14.1 describes in silico modeling targets of drug disposition.

QSAR and quantitative structure�property relationship (QSPR) research pro-

vides qualitative strategies that use multivariate analysis to link molecular descrip-

tors with ADMET-related features. A wide selection of statistical algorithms is

available to researchers for correlating field descriptors with ADMET properties

including simple multiple linear regression (MLR), multivariate partial least-

squares (PLS), and the nonlinear regression-type algorithms such as artificial

neural networks (ANN) and support vector machine (SVM). Just like descriptor

selection, it is essential to select the right mathematical tool for the most effective

ADMET modeling. Sometimes it is necessary to apply multiple statistical methods

and compare the results [30].

14.4.1 Absorption

Because of its convenience and good patient compliance, the oral route of admin-

istration is the most preferred drug delivery form. Thus, greater attention toward

in silico approaches is aimed at modeling drug oral absorption, which mainly

occurs in the human intestine. The drug bioavailability and absorption are the

FIGURE 14.1

In silico modeling targets of drug disposition.
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result of the interplay between drug solubility and intestinal permeability. A drug

generally must dissolve before it can be absorbed from the intestinal lumen.

Direct measurement of solubility is time-consuming and requires a large amount

of (expensive) compound at the milligram scale. By measuring a drug’s logP value

(log of the partition coefficient of the compound between water and n-octanol)

and its melting point, one could indirectly estimate solubility using the “general

solubility equation.” For the prediction of the solubility of the compound even

before synthesizing it, in silico modeling can be implemented. There are mainly

two approaches to modeling solubility. One is based on the underlying physiologi-

cal processes, and the other is an empirical approach. The dissolution process

involves the breaking up of the solute from its crystal lattice and the association of

the solute with solvent molecules. For drug-like molecules, solvent�solute interac-

tion has been the major determinant of solubility and its prediction attracts the

most efforts. LogP is the simplest estimation of solvent�solute interaction and

can be readily predicted with commercial programs such as CLogP, which utilizes

a fragment-based approach. Empirical approaches, represented by QSPR, utilize

multivariate analyses to identify correlations between molecular descriptors and

solubility [31].

Intestinal permeation describes the ability of drugs to cross the intestinal

mucosa separating the gut lumen from the portal circulation. It is a process for

drugs to pass the intestinal membrane before entering the systemic circulation to

reach their target site of action. The current models aim to simulate in vitro mem-

brane permeation of Caco-2, MDCK, or PAMPA (parallel artificial membrane

permeability assay) which have been a useful indicator of in vivo drug absorption.

Caco-2 is an immortalized cell line of human colorectal adenocarcinoma cells.

It is primarily used as a model of the intestinal epithelial barrier. MDCK cells are

a model mammalian cell line used in biomedical research. The PAMPA is used

as an in vitro model of passive, transcellular permeation. The process involves

both passive diffusion and active transport. The ionization state will affect both

solubility and permeability. The ionization constant value (pKa) indicates the

strength of an acid or a base [32].

Intestinal epithelial cells include influx and efflux transporters, which can

either increase or decrease oral absorption. Drugs that mimic their native sub-

strates are actively transported across the epithelial cell by flux transporters like

the human peptide transporter 1 (hPEPT1), apical sodium bile acid transporter

(ASBT), and nucleoside transporters. Drugs that have been ingested are actively

pumped back into the intestinal lumen by efflux transporters such as P-glycoprotein

(P-gp), multidrug resistance-associated protein (MRP), and breast cancer resistance

protein (BCRP). To correctly predict overall oral absorption, drug metabolism in

intestinal epithelial cells by cytochrome P450 enzymes should also be considered [33].

Advantage of in silico model to predict absorption:

1. It has a good capability of modeling saturable transporter and enzymes.

2. It can simulate the fraction of drug metabolized.
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3. It can retain appropriate plasma concentration—time kinetics can be generated

that consider the change in both time and dose.

The disadvantage of these programs is that the input required (dose, dosage

form, logP, pKa, molecular weight) may limit their use as these inputs may not

be generated [34]. The target property for most models is the logarithm of solubil-

ity (logS), and many models are trained and verified with the AQUASOL (http://

www.pharmacy.arizona.edu/outreach/aquasol/) and PhysProp (http://www.syrres.

com/esc/physprop.htm) databases. Softwares to predict intestinal permeation are

SCSpKa (ChemSilico, Tewksbury, MA), Pallas/pKalc (CompuDrug, Sedona, AZ),

ACD/pKa (ACD, Toronto, ON, Canada), and SPARC online calculator. Much

software for simulating the ADME process has been produced. This includes

GastroPlus, DEA pKEXPRESS, PK-Sim, and Cloe PK. GastroPlus and iDEA pro-

grams are useful in modeling of the absorption process by considering solubility

and permeability. In a more developed version, the effect of P-glycoprotein inter-

action and CYP3A4 metabolism is considered [35].

14.4.2 Distribution

Distribution is an important aspect of a drug’s pharmacokinetics. The structural

and physiochemical properties contribute to the drug’s distribution governed

majorly by three important parameters: volume of distribution (VD), plasma-

protein binding (PPB), and blood�brain barrier (BBB) permeability. VD is a

measure of the relative partitioning of drug between plasma and tissue, an impor-

tant proportional constant that, when combined with drug clearance, could be

used to predict drug half-life and is a major determinant of how often the drug

should be administered. BBB maintains the restricted extracellular environment in

the central nervous system (CNS). For drugs that target the CNS, it is imperative

that they cross the BBB to reach their targets. For drugs with peripheral targets, it

is desirable to restrict their passage through the BBB to avoid CNS side effects.

Most approaches model log blood/brain (logBB), which is a measurement of the

drug partitioning between blood and brain tissue. Three types of drug efflux trans-

porters of the brain are multidrug resistance transporters, monocarboxylic acid

transporters, and organic ion transporters. Tools are also available to predict tissue

distribution using physicochemical properties [36].

14.4.3 Metabolism and excretion

The prediction of metabolism is the most challenging aspect of drug’s pharmaco-

kinetics. METEOR and META are the available programs for metabolite identifi-

cation to provide crucial early warns of potential toxicity. We can predict the site

of metabolism within molecule and likelihood of metabolism. This is also benefi-

cial because studying metabolism in animals may not reflect the actual metabo-

lism in humans due to species differences in metabolism [34]. The excretion or
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clearance of a drug is quantified by plasma clearance, which is defined as plasma

volume that has been cleared completely free of drug per unit of time. Together

with VD, it can assist in the calculation of drug half-life, thus determining dosage

regime. Hepatic and renal clearances are the two main components of plasma

clearance. Current modeling efforts are mainly focused on estimating in vivo

clearance from in vitro data.

14.4.4 Transporters in absorption, distribution, metabolism,
excretion, and toxicity

Given the prevalence of transporters on barrier membranes and the wide overlap

between the substrates of transporters and many medicines, transporters should

be a fundamental component of any ADMET modeling tool. The study of trans-

porters has produced a sizable amount of in vitro data, which in turn has made it

possible to create pharmacophore and QSAR models for many of them. Their

incorporation into current modeling programs would also result in a more accu-

rate prediction of drug disposition behavior [37].

14.4.4.1 P-glycoprotein
It is an efflux transporter that transfers a variety of substrates out of the cell in an

ATP-dependent manner. By lowering absorption and boosting renal and hepatic

elimination, it alters how drugs are disposed. P-gp is known to hinder the CNS

penetration of human immunodeficiency virus (HIV) protease inhibitors and the

intestinal absorption of the anticancer medication paclitaxel [38].

14.4.4.2 Breast cancer resistance protein
It is an additional ATP-dependent efflux transporter that provides resistance to

certain anticancer medications. In addition to being highly expressed in solid tumors

and hematological malignancies, BCRP is also found in the colon, liver, and brain,

suggesting a complex involvement in drug disposition behavior. The model under-

lines the importance of extremely particular structural features for BCRP, such as a

2,3-double bond in ring C and a hydroxylation at position 5. In fact, this caveat

should be considered for all predictive in silico models, because no model can

cover all possible chemical space [39].

14.4.4.3 Nucleoside transporters
Both naturally occurring nucleosides and synthesized nucleoside analogs, such as

cladribine, which are utilized as antiviral and anticancer medications, are trans-

ported by nucleoside transporters (e.g., zalcitabine). Nucleoside transporters come

in a variety of forms, with each having a unique substrate specificity. Examples

include concentrative nucleoside transporters (CNT1, CNT2, CNT3) and equili-

brate nucleoside transporters (ENT1, ENT2). The high-affinity, selective CNTs

are mostly found in the epithelia of the colon, kidney, liver, and brain, whereas
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the broad-affinity, low-selective ENTs are found everywhere. One hydrogen bond

acceptor and two hydrophobic components make up the pentose ring. The individ-

ual models also reveal the subtle characteristic requirements for each specific

transporter. The modeling results also support the previous observation that CNT2

exhibits substrate-selectivity, whereas ENT1 shows substrate-specificity [40].

14.4.4.4 The human peptide transporter
The substrates such as β-lactam antibiotics and angiotensin-converting enzyme

(ACE) inhibitors are transported through the low-affinity, high-capacity oligopep-

tide transport system. It has a major impact on drug absorption and excretion

because it is mostly expressed in the intestine and kidneys. Following that, the

CMC database with over 8000 drug-like compounds was screened using the phar-

macophore model. The model recommended the HMG-CoA reductase inhibitor

fluvastatin and the antidiabetic repaglinide [41].

14.4.4.5 The human apical sodium-dependent bile acid transporter
It is a very effective, high-capacity transporter that is expressed on the apical

membrane of cholangiocytes and intestinal epithelial cells. It offers an alternative

intestinal target for enhancing medication absorption by facilitating the absorption

of bile acids and their analogs. One hydrogen bond donor, one negative charge,

one hydrogen bond acceptor, and three hydrophobic centers were identified as

being necessary for ASBT transport by the model. These requirements are in

good agreement with a previous 3D-QSAR model derived from the structure and

activity of 30 ASBT inhibitors and substrates [42].

14.4.4.6 The organic cation transporters
The organic cation transporters (OCTs) make it easier for many cationic medica-

tions to traverse various intestinal, liver, and kidney barrier membranes. The chem-

ical class of organic cation (bearing a net positive charge at physiological pH)

includes a wide variety of medications or their metabolites, such as antiarrhyth-

mics, -adrenoreceptor blockers, antihistamines, antiviral medications, and skeletal

muscle relaxants. OCT1, OCT2, and OCT3 are the three OCTs that have been

cloned from different animals. By examining the degree to which 22 different

compounds inhibited TEA uptake in HeLa cells, a human OCT1 pharmacophore

model was created. The model implies that three hydrophobic properties and one

positively ionizable feature are necessary for human OCT1 to be transported. Both

2D- and 3D-QSAR analyses were performed to identify and discriminate the bind-

ing requirements of the two orthologs [43].

14.4.4.7 The organic anion transporters
By actively transporting them across a wide range of tissue membranes, including

those in the liver, colon, lung, and brain, it affects the plasma concentration of

numerous medications. Organic anion transporters (OATPs) transport organic cat-

ionic medications as well as organic anionic pharmaceuticals, contrary to what
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was once believed because of their broad substrate specificity. There are currently

11 human OATPs known, and most recently, a metapharmacophore technique

was used to successfully predict the substrate binding requirements of the best

studied OATP1B1. The metapharmacophore model revealed three hydrophobic

features flanked by two hydrogen bond acceptor features as being the crucial

requirement for OATP1B1 transport after analyzing a training set of 18 different

compounds [44].

14.4.4.8 Blood�brain barrier-choline transporter
Choline, a charged cation, is transported into the CNS by the native nutrition

transporter known as BBB-choline transporter. Because of its active transport, it

helps choline-like molecules penetrate the BBB. Knowing its structural needs

could help forecast BBB permeability more accurately. Geldenhuys and collea-

gues studied the requirements of binding of BBB-choline transporter using a com-

bination of theoretical and empirical approaches, despite the fact that the BBB-

choline transporter has not yet been cloned. The 3D-QSAR models were con-

structed with empirical Ki data determined using rat brain perfusion study involv-

ing structurally diverse compounds. Around the positively charged ammonium

moiety, three hydrophobic contacts and one hydrogen bonding interaction were

found to be crucial for BBB-choline transporter identification. It does provide a

useful estimation of BBB-choline transporter binding requirements. More accurate

in silico models could be generated once higher-quality data from the cloned

BBB-choline transporter are available [45].

14.5 Computer simulation in pharmacokinetics and
pharmacodynamics

The use of computer modeling for the pharmacokinetics and pharmacodynamic

properties of the drug helped in developing the dosage form more rapidly, less

expensive, and with less labor [46]. With the main goal of producing a drug that

is nontoxic and effective [26] by a routine use of computer simulation in the

course of drug development processes [27]. As the quality of data input increases,

the chance of successful computer simulation of pharmacokinetic and pharmaco-

dynamic increases, and by using the preceding studies as a reference to predict

the computer simulation and so indicate the pharmacokinetic and pharmacody-

namic parameters of each drug [46]. Some known famous agencies have already

started to use computer simulation such as:

• Food and Drug Administration (FDA): They introduced a modern improve-

ment in computer simulation modeling in the development process.

• US Environment Protection agency (EPA): It is becoming more conscious

about the benefits of using the computational presentation of complicated systems

to predict the behavior of the system or shrink the number of possibilities.
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By mathematical representation of an organism, a lot of possibilities, which

can be put under implementation (such as clinical trials simulation), can be inves-

tigated. Fig. 14.2 shows the map of exposure to response same as in clinical trials

computer simulation.

The simulation of whole organism can be presented by:

1. Lumped parameter pharmacokinetic pharmacodynamic models: The reason for

this study is to identify the pharmacokinetic and pharmacodynamic properties

and also to predict the dosage regimen of the population by modeling

analysis. The plasma concentration versus time using two two-compartment

linear models and body weight related to central volume distribution is used

to predict the behavior overtime but frequently the prediction occurs by

nonlinear models to evaluate the parameter values of the population and their

statistical distribution.

2. Physiological modeling (physiological-based pharmacokinetic model): PBPK

uses the usual differential equations describing the interacting organs and

organisms in more details by increasing the number of these equations.

The simulation of isolated tissue and organs, such as the kidney, brain, heart,

and liver, are handled by mathematical modeling research. The heart and liver

were massively investigated, and the heart and liver computational simulations

were done by distributed blood tissue exchange models (BTEX). The incorporation

of organ modeling with whole organism modeling will lead to a better result

of PBPK [47]. Importantly, the currently available transporter models only cover a

small fraction of all transporters involved in drug disposition. Other than incorpo-

rating current stand-alone transporter models into systemic models to directly

predict drug pharmacokinetic properties, continued efforts are still needed to inves-

tigate other transporters such as MRP, BCRP, NTCP, and OAT, to get a more com-

plete understanding of the drug pharmacokinetic profile. Not all pharmaceutical

companies can afford the resources to generate their own in-house modeling pro-

grams, so commercial in silico modeling becomes an attractive option.

FIGURE 14.2

Map of exposure to response.
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14.6 Artificial intelligence in pharmaceutics
AI is the simulation of tasks, such as language understanding, planning, and

problem-solving, that require human intelligence. A system based on technology

called AI can replicate human intelligence by using a variety of cutting-edge

tools and networks. AI employs hardware and software that can comprehend

and gain knowledge from input data in order to make independent decisions

for the accomplishment of predetermined goals. A number of approach domains,

including machine learning (ML), knowledge representation, and reasoning, are

involved in AI (ML). Artificial neural networks (ANNs) are utilized in the deep

learning (DL) discipline of machine learning [48]. The development of pharma-

ceutical products is a highly specialized task that requires a lot of time and expe-

rience [49]. Stepwise development is presented in Fig. 14.3 and classification is

presented in Fig. 14.4.

So, the use of AI can result in better quality and productivity as well as

shorten the development time [2]. We can exploit the powers of computers

and pharmacists to achieve a better outcome. These comprise of sophisticated set

of integrated computing elements involving “perceptons” analogous to human

neurons, representing the signal transmission of electrical impulses inside the

human brain.

14.6.1 Expert system

There are two technical approaches of AI: expert systems and machine learning

[47]. Expert system is an obvious programmed rule. The expert system analyzes

the characteristics of active pharmaceutical ingredients and recommends the one

with accepted characteristics. It has many applications in pharmaceutics, for

example, it is used to predict the drug release from osmotic tablet, design of oral

FIGURE 14.3

Stepwise development of artificial intelligence (AI).
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disintegrating tablet, and drug-excipient compatibility research. Machine learning

is a mathematical approach that is highly useful when there are no specific rules

to regulate a particular phenomenon [47].

14.6.2 Machine learning

Machine learning can be used in many fields of pharmaceutics: (1) to predict

the performance of various dosage forms; (2) to predict physical stability and

solid dispersion; (3) to investigate the dissolution behavior of solid dispersion;

(4) to predict the nanocrystal that is used in drug delivery system; (5) construct

a model to decide what to use oil, surfactant, or cosurfactant to form self-

microemulsifying drug delivery system (SEDDS) [2]. AI could be used in drug

delivery systems to study the ADME profile by simulating the human body envi-

ronment which allows us to research and investigate multilayered data [48]. AI

can gather data from multiple sources to give us a clue whether the drug could

suit the drug delivery system or not by evaluating the pharmacokinetics and

patient information. Examples of applications of AI in pharmacy are:

1. To predict the structure of proteins by AlphaFold 2 which is produced by

google’s deep-mind.

2. To predict the drug release parameter by ANNs which manifest a high

accuracy.

3. To predict the best treatment for a patient like insulin pump which contain AI

algorithm to deliver the right dose of insulin.

4. To improve the nanotechnology delivery.

However, AI has disadvantages that limit their use like lacking data [49]. The

implication of AI in drug discovery is presented in Fig. 14.5.

FIGURE 14.4

Classification of artificial intelligence (AI).
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14.6.3 Challenges of artificial intelligence in drug discovery

Businesses that employ AI for drug research must go through a rigorous process to

copyright their work in order to obtain patent rights. Because AI-driven

tailored treatment involves a person’s genetic code, security is another key worry (legal

issues). Big data will require faster calculation, and it is predicted that quantum compu-

ters will eventually replace the current supercomputers. There is still no success story

of an AI-generated substance reaching the market and being used by the general public.

A biotechnology startup called In silico Medicine proposed a novel target involved in

idiopathic pulmonary fibrosis and created its own inhibitor using AI-based technolo-

gies. The found small molecule inhibitor has demonstrated good efficacy, and the com-

pany submitted an investigational new drug (IND) application in December 2020. The

anticipated clinical studies are scheduled to begin at the end of 2022.

14.7 Pharmaceutical automation
As the pharmaceutical industry is continuously developing through the evolution

of newer technologies, the industry needs a new way to adapt to such development

to get the maximum production, reduce the cost and the time, this can be done by

pharmaceutical automation which means manufacturing automatically [50].

Automation is unavoidable as it shows a lot of improvements in performance

in the pharmaceutical industry with many great advantages such as:

1. Accuracy: Remove human error and because it is automated and it does not

require a learning curve to learn how to blend, weight, tableting of solids,

stirring, and filling of liquid.

2. Effective: Automated machines can do tedious work at higher speed than

humans and it can work 24 hours.

FIGURE 14.5

Artificial intelligence (AI) in drug discovery.
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3. Lower contamination: As the humans work less in the handling and

production of products, the contamination risk will decrease.

4. Clarity: Automation make it possible for end-to-end tracking of products by

the final delivery, records the batch electronically, radio frequency

identification, and performance management can help in identifying any

ineffective products and fix them.

5. Return on investment: The advanced costs of automation technology can all

be returned over that time because the automated machines will enhance

quality, supply energy saving, and provide rapid production.

Pharmaceutical automation applications:

• Compression and coating of tablets.

• Dosing of liquids.

• Filling, packaging, and drug delivery systems.

• Tracking and the ability to trace.

• Encapsulation of liquid and solid dosage forms.

• Labeling of radio frequency identification.

• Different processes such as high-shear wet granulation, dry granulation, fluid

bed granulation, milling, drying, extrusion, blending, and microionization [50].

The AI tools are employed in speeding up or facilitating the entire drug dis-

covery process (Fig. 14.6).

FIGURE 14.6

Artificial intelligence (AI) in facilitating the drug discovery process.
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14.8 Conclusion

Increased attention has been recently focused on computational pharmaceutics as

a useful method, for the effective development of new drug delivery systems to

speed up the development process, save time and money, and modify the formula

to get optimal delivery systems with good solubility, absorption, stability, and

pharmacological effect. Computational pharmaceutics involves quantum mechan-

ics, physiologically based pharmacokinetic modeling, simulation of molecular

dynamics, process simulation, mathematical modeling, machine learning algo-

rithms, and AI. These models can help in predicting the physicochemical proper-

ties of pharmaceutical formulations and examine the molecular mechanisms of

molecular mechanics-based formulations; thus, improving therapeutic efficacy,

reducing running costs, and saving time and energy.
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