ANALYSIS OF ALGORITHMS

Chapter2/Part2

Prepared by: Enas Abu Samra

KEY POINTS OF CHAPTER2

- Analysis of Algorithms.
- Calculating the Running Time of a program.
- Order of Growth.
- Best Case, Average Case, Worst Case.
- Analyzing the Time Efficiency of non-recursive Algorithms.
- Analyzing the Time Efficiency of recursive Algorithms.

What is the Asymptotic Notations?

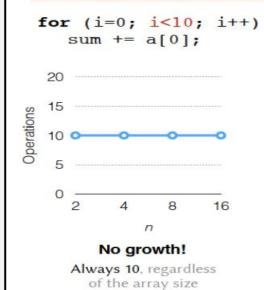
TIME COMPLEXITY -ASYMPTOTIC ANALYSIS

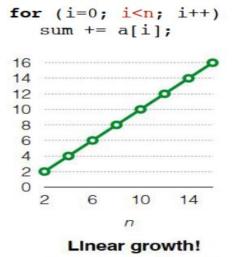
- The efficiency of an algorithm depends on the amount of time, storage and other resources required to execute the algorithm. The efficiency is measured with the help of **asymptotic notations.**
- An algorithm may **not** have the same performance for different types of inputs. With the increase in the input size, the performance will change.
- The study of change in performance of the algorithm with the change in the order of the input size is defined as **asymptotic analysis**.

ASYMPTOTIC ANALYSIS

Example. Assume $n \ge 10$ is the size of an array and we are interested in counting the number of array accesses an algorithm performs.

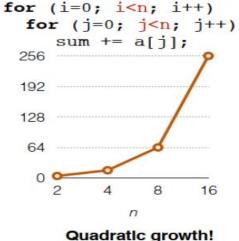
? How quickly does the number operations performed grows when the input size grows (when the array size grows)?





operations double when

the array size doubles



Quadratic growth! operations quadruple when the array size doubles

ASYMPTOTIC NOTATIONS

- **Asymptotic notations** are the mathematical notations used to describe the **running time of an algorithm** when the input tends towards a particular value or a limiting value.
- There are mainly three asymptotic notations:
 - \checkmark Big-O notation → O
 - ✓ Omega notation $\rightarrow \Omega$
 - ✓ Theta notation $\rightarrow \Theta$

ASYMPTOTIC NOTATIONS

The most common Asymptotic Notation for calculating Algorithm's complexities are:

▶ Big-O Notation

Big-O notation represents the upper bound of the running time of an algorithm. Thus, it gives the **worst-case complexity** of an algorithm.

ightharpoonup Big- Ω Notation

Omega notation represents the lower bound of the running time of an algorithm. Thus, it provides the **best-case complexity** of an algorithm.

▶ Big- **\Oldot** Notation

Theta notation encloses the function from above and below. Since it represents the upper and the lower bound of the running time of an algorithm, it is used for analyzing the **average-case complexity** of an algorithm.

Why we use the Asymptotic Notations?

CASE STUDY (1)

• Suppose we have values in this array, and we want to search for **number 3**.

Example: Linear Search										
	O	1	2							n-1
Array of size n				•••						
Search_value										

- ✓ If number 3 is in the **first place**, how many steps does it take to reach it? \rightarrow 1 step.
- ✓ If number 3 is in the **middle of array**, how many steps does it take to reach it? \rightarrow (n-1)/2 steps.
- ✓ If number 3 is in the **last place**, how many steps does it take to reach it? \rightarrow (n-1) steps.

CASE STUDY(1)

- ✓ If number 3 is in the **first place**, we called this case \rightarrow **Best Case.** (minimum number of steps).
- ✓ If number 3 is in the **middle of array**, we called this case → **Average Case.** (average number of steps).
- ✓ If number 3 is in the **last place**, we called this case \rightarrow Worst Case. (maximum number of steps).
- How to represent these cases in algorithm analysis?

Using the asymptotic notations.

Note:

In the previous case (Linear Search), the complexity is:

Best case $\rightarrow \Omega(n)$, Average case $\rightarrow \Theta(n)$, Worst case $\rightarrow O(1)$

CASE STUDY (2) – WHO IS BETTER?

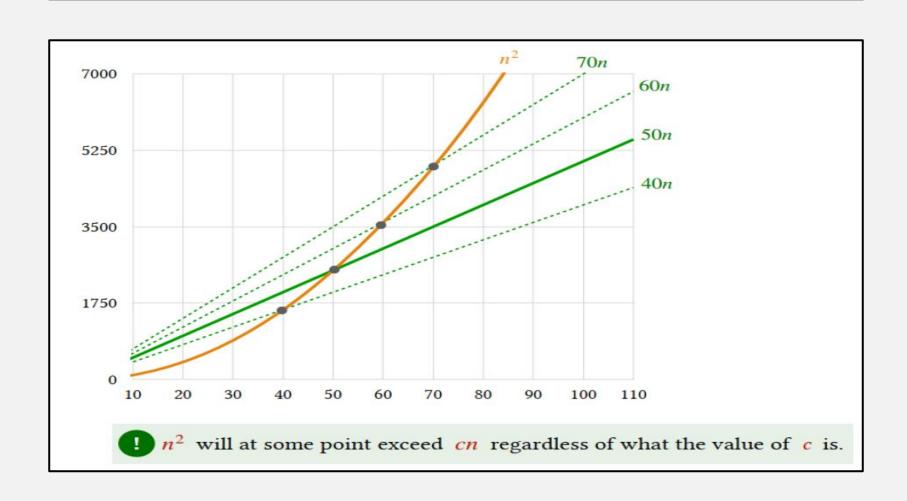


CASE STUDY (2) – WHO IS BETTER?

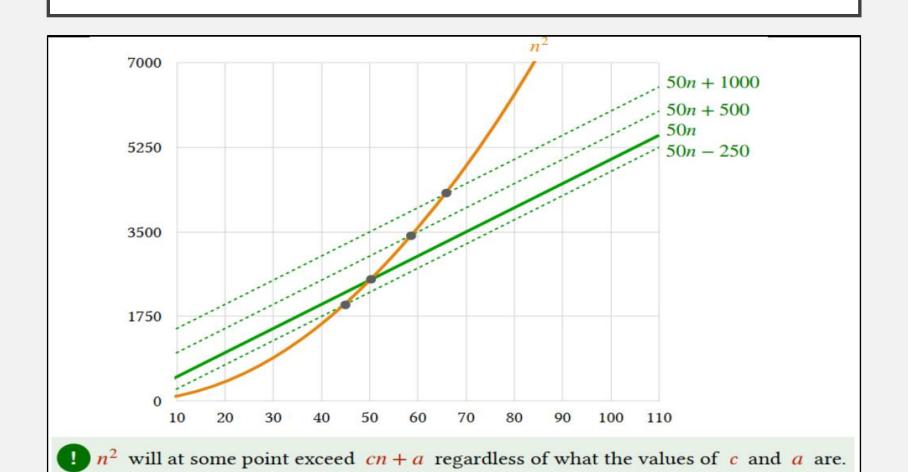
Algorithm <i>A</i>	Algorithm <i>B</i>	$50n$ vs n^2
	D	7000
500	100	
1000	400	5250
1500	900	3500
2000	1600	
2500	2500	1750
3000	3600	
3500	4900	10 20 30 40 50 60 70 8
4000	6400	10 20 30 40 50 60 70 8
4500	8100	Algorithm AAlgorithm B
	1500 2000 2500 3000 3500 4000	1500 900 2000 1600 2500 2500 3000 3600 3500 4900 4000 6400

operations) than 50n forever (when n > 50 in this case)

ORDER OF GROWTH –EXAMPLE(1)



ORDER OF GROWTH-EXAMPLE(2)



ORDER OF GROWTH

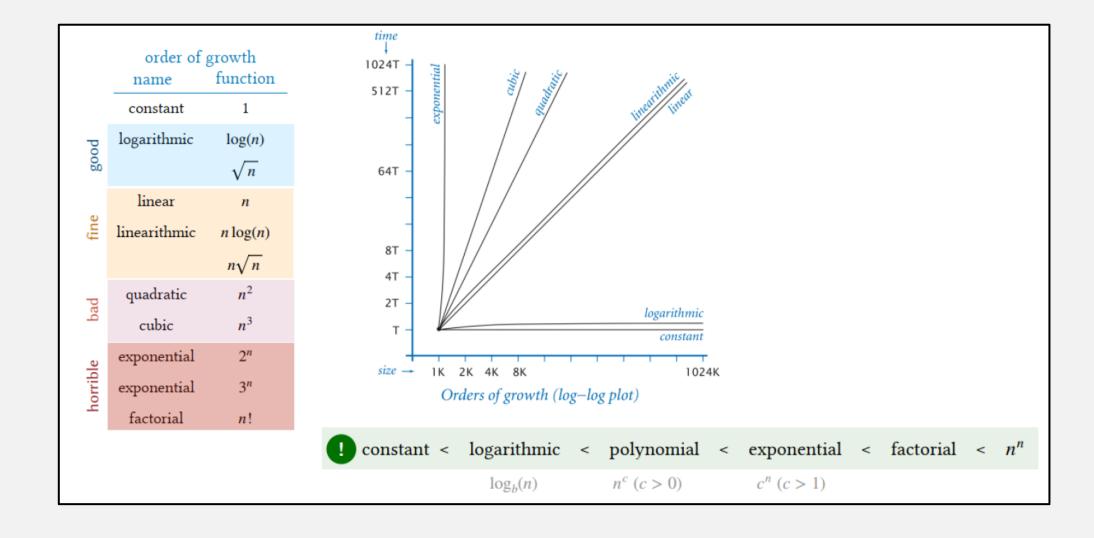
Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows.

Examples: $\log n$, n, n2, n3, 2n, etc.

	order of growth						
	name	function					
	constant	1					
pc	logarithmic	log(n)					
good		\sqrt{n}					
tine	linear	n					
	linearithmic	$n \log(n)$					
		$n\sqrt{n}$					
pad	quadratic	n^2					
	cubic	n^3					
horrible	exponential	2^n					
	exponential	3^n					
	factorial	n!					

order of growth

ORDER OF GROWTH



COMMON TIME COMPLEXITY

O(c) = 1, c: any constant

O(log logn)

 $O(logn) \rightarrow O(\sqrt{n}) \approx O(n^c), \quad 0 < c < 1 \rightarrow O(\sqrt{n})$

 $O(\sqrt{n \log n}) \rightarrow (\log n * \log n) \rightarrow (\log n)^2$

O(n)

O(nlogn) → O(logn!)

 $O(n^c), c \ge 2$

 $O(c^n), c > 1$

O(n!)

 $O(n^n)$

 $log_n n = 1$

log 1 = 0

REASONS FOR THE NEED FOR ASYMPTOTIC NOTATIONS

- ➤ The algorithm may have more than one time complexity for different cases.

 Example → case study (1), three time complexity.
- ➤ To compare between the different algorithms.

 Example → case study (2), the algorithm A is better/equal/wore than algorithm B.

Description of the Asymptotic Notations

BIG-O NOTATION (WORST CASE)

 \triangleright Given $\mathbf{f}(\mathbf{n})$ and $\mathbf{g}(\mathbf{n})$ - functions defined for positive integers:

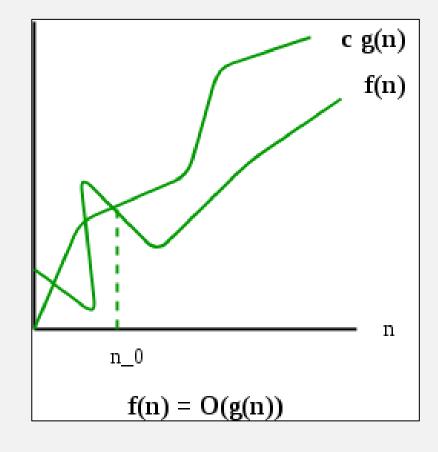
Then
$$f(n) = O(g(n))$$

• If there exists a positive constant $c (c \ge 1)$ such that:

$$f(n) \le c*g(n)$$

for all sufficiently large positive integers n, $(n \ge n_0)$.

• The Big O notation defines an **upper bound** of an algorithm, it bounds a function only from above.



Ω NOTATION (BEST CASE)

 \triangleright Given $\mathbf{f}(\mathbf{n})$ and $\mathbf{g}(\mathbf{n})$ - functions defined for positive integers:

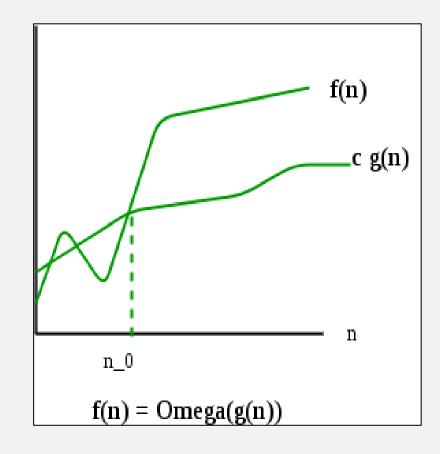
Then
$$f(n) = \Omega(g(n))$$

If there exists a positive constant c ($c \ge 1$) such that:

$$f(n) \ge c*g(n)$$

for all sufficiently large positive integers n, $(n \ge n_0)$.

- The Omega Ω notation defines an **lower bound** of an algorithm, it bounds a function only from below.
- Since the best-case performance of an algorithm is generally not useful, the Omega notation is **the least used** notation among all three.



THETA-O NOTATION

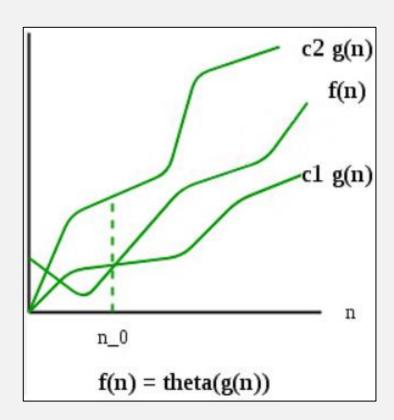
 \triangleright Given $\mathbf{f}(\mathbf{n})$ and $\mathbf{g}(\mathbf{n})$ - functions defined for positive integers:

Then
$$f(n) = \Theta(g(n))$$

If there exists two positive constants c1 and c2 (c1, c2 \geq 1) such that: $c1*g(n) \leq f(n) \leq c2*g(n)$

for all sufficiently large positive integers n, $(n \ge n_0)$.

- The above definition means, if f(n) is theta of g(n), then the value f(n) is always between cl*g(n) and c2*g(n) for large values of n ($n \ge n_0$).
- The theta notation bounds a functions from above and below, so it defines exact asymptotic behavior.
- Combine between the big and omega notations.



Examples of Big Notation

EXAMPLE(1) OF BIG NOTATION

Assume $\mathbf{f}(\mathbf{n}) = 2n + 5$, $\mathbf{g}(\mathbf{n}) = n$, prove that: $\mathbf{f}(\mathbf{n}) = O(\mathbf{g}(\mathbf{n}))$

Hint: c*g(n) = 3n, don't forget that c and no is positive values.

Solution:

$$f(n) \le c*g(n)$$

$$n_0 = 1$$
, $\rightarrow 2(1) + 5 <= 3(1) \rightarrow 7 <= 3$ (False)

$$n_0 = 2$$
, $\rightarrow 2(2) + 5 <= 3(2) \rightarrow 9 <= 6 (False)$

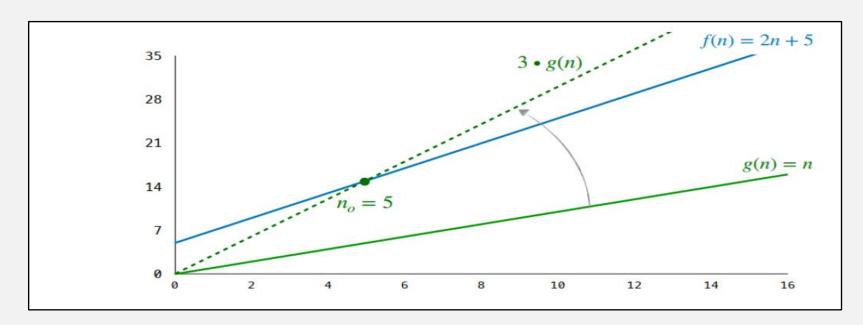
$$n_0 = 3$$
, $\rightarrow 2(3) + 5 <= 3(3) \rightarrow 11 <= 9$ (False)

$$n_0 = 4$$
, $\rightarrow 2(4) + 5 <= 3(4) \rightarrow 13 <= 12$ (False)

$$n_0 = 5$$
, $\rightarrow 2(5) + 5 <= 3(5) \rightarrow 15 <= 15$ (True)

EXAMPLE(1) OF BIG NOTATION

- When the input is (5), the two algorithms are equal in the operations number, but when the inputs become greater than (5), $\mathbf{c}^*\mathbf{g}(\mathbf{n})$ will be worse than $\mathbf{f}(\mathbf{n})$.
 - \rightarrow We can say that c*g(n) worse that f(n) when n>5.



EXAMPLE(2) OF BIG NOTATION

Assume $\mathbf{f}(\mathbf{n}) = 2n + 5$, $\mathbf{g}(\mathbf{n}) = n$, prove that: $\mathbf{f}(\mathbf{n}) = O(\mathbf{g}(\mathbf{n}))$

Hint: c*g(n) = 4n, don't forget that c and no is positive values.

Solution:

$$f(n) \le c*g(n)$$

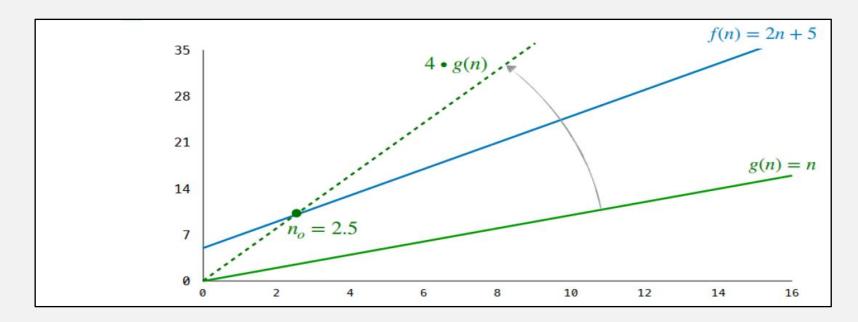
$$n_0 = 1$$
, $\rightarrow 2(1) + 5 <= 4(1) \rightarrow 7 <= 4 (False)$

$$n_0 = 2$$
, $\rightarrow 2(2) + 5 <= 4(2) \rightarrow 9 <= 8 (False)$

$$n_0 = 2.5$$
, $\rightarrow 2(2.5) + 5 <= 4(2.5) \rightarrow 10 <= 10$ (True)

EXAMPLE(2) OF BIG NOTATION

- When the input is (2.5), the two algorithms are equal in the operations number, but when the inputs become greater than (5), $\mathbf{c}^*\mathbf{g}(\mathbf{n})$ will be worse than $\mathbf{f}(\mathbf{n})$.
 - \rightarrow We can say that c*g(n) worse that f(n) when n>2.5



EXAMPLE(3) OF BIG NOTATION

Assume $\mathbf{f}(\mathbf{n}) = 2n + 5$, $\mathbf{g}(\mathbf{n}) = n$, prove that: $\mathbf{f}(\mathbf{n}) = O(\mathbf{g}(\mathbf{n}))$

Hint: $\mathbf{c}^*\mathbf{g}(\mathbf{n}) = 7\mathbf{n}$, don't forget that c and no is positive values.

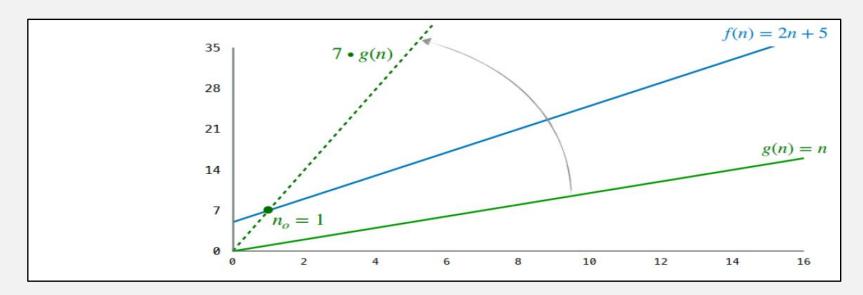
Solution:

$$f(n) \le c*g(n)$$

$$n_0 = 1$$
, $\rightarrow 2(1) + 5 <= 7(1) \rightarrow 7 <= 7 (True)$

EXAMPLE(3) OF BIG NOTATION

- When the input is (1), the two algorithms are equal in the operations number, but when the inputs become greater than (1), $\mathbf{c}^*\mathbf{g}(\mathbf{n})$ will be worse than $\mathbf{f}(\mathbf{n})$.
 - \rightarrow We can say that c*g(n) worse that f(n) when n>1



EXAMPLES OF BIG NOTATION

 \triangleright Prove that these functions f(n) are belong/equal to O(g(n)).

$$\rightarrow$$
 f(n) = 20n, g(n) = 2^n, Hint: assume c = 1 Sol. no = 8

$$\rightarrow$$
 f(n) = 2n², g(n) =n!, Hint: assume c = 1 Sol. no = 5

$$\Rightarrow$$
 f(n) = log8n, g(n) = n^3, Hint: assume c = 2 Sol. no = 2

⇒
$$f(n) = 10n + 1$$
, $g(n) = n$, Hint: assume $c = 11$ Sol. $n0 = 1$

$$\Rightarrow$$
 f(**n**) = 5n^2 + 6n, **g**(**n**) = 2^n, **Hint:** assume **c** = 1 **Sol. no** = 9

Examples of Omega Notation

EXAMPLE(1) OF OMEGA NOTATION

Assume $\mathbf{f}(\mathbf{n}) = 6\mathbf{n}$, $\mathbf{g}(\mathbf{n}) = \mathbf{n} + 5$, prove that: $\mathbf{f}(\mathbf{n}) = \Omega(\mathbf{g}(\mathbf{n}))$

Hint: c*g(n) = 2n + 5, don't forget that c and no is positive values.

Solution:

$$f(n) \ge c*g(n)$$

$$n_0 = 1$$
, $\rightarrow 6(1) >= 2(1) + 5 $\rightarrow 6 >= 7$ (False)$

$$n_0 = 2$$
, $\rightarrow 6(2) >= 2(2) + 5 $\rightarrow 12 >= 9$ (**True**)$

- \triangleright When the inputs become equal/greater than (2), c*g(n) will be better than f(n).
 - \rightarrow We can say that c*g(n) better that f(n) when n>=2

EXAMPLE(2) OF OMEGA NOTATION

ightharpoonup Assume $\mathbf{f}(\mathbf{n}) = \mathrm{n}^2$, $\mathbf{g}(\mathbf{n}) = \mathrm{nlog}(\mathbf{n})$, prove that: $\mathbf{f}(\mathbf{n}) = \Omega(\mathbf{g}(\mathbf{n}))$

Hint: c*g(n) = 5nlogn, don't forget that c and no is positive values.

Solution:

$$f(n) \ge c*g(n)$$

$$n_0 = 1$$
, $\rightarrow 1^{(2)} >= 5(1)\log(1) \rightarrow 1 >= 0$ (**True**)

- \triangleright When the inputs become equal/greater than (1), c*g(n) will be better than f(n).
 - \rightarrow We can say that c*g(n) better that f(n) when n>=1

EXAMPLE(3) OF OMEGA NOTATION

Assume $\mathbf{f}(\mathbf{n}) = 2n^2$, $\mathbf{g}(\mathbf{n}) = n^2 + 3n - 1$, prove that: $\mathbf{f}(\mathbf{n}) = \Omega(\mathbf{g}(\mathbf{n}))$

Hint: $\mathbf{c}^*\mathbf{g}(\mathbf{n}) = \mathbf{n}^2 + 3\mathbf{n} - 1$, don't forget that c and no is positive values.

Solution:

$$f(n) \ge c*g(n)$$

$$n_0 = 1$$
, $\rightarrow 2(1)^2 >= (1)^2 + 3(1) - 1 \rightarrow 2 >= 3$ (False)

$$n_0 = 2$$
, $\rightarrow 2(2)^2 >= (2)^2 + 3(2) - 1 \rightarrow 8 >= 9 (False)$

$$n_0 = 3$$
, $\rightarrow 2(3)^2 >= (3)^2 + 3(3) - 1 \rightarrow 18 >= 17$ (**True**)

- \triangleright When the inputs become equal/greater than (3), c*g(n) will be better than f(n).
 - \rightarrow We can say that c*g(n) better that f(n) when n>=3

EXAMPLE(4) OF OMEGA NOTATION

ightharpoonup Assume $\mathbf{f}(\mathbf{n}) = \mathbf{n}^2$, $\mathbf{g}(\mathbf{n}) = \mathbf{n}$, prove that: $\mathbf{f}(\mathbf{n}) = \Omega(\mathbf{g}(\mathbf{n}))$

Hint: $\mathbf{c}^*\mathbf{g}(\mathbf{n}) = \mathbf{n}$, don't forget that c and no is positive values.

Solution:

$$f(n) \ge c*g(n)$$

$$n_0 = 1$$
, \rightarrow (1) ^ 2 >= 1 \rightarrow 1 >= 1 (**True**)

- \triangleright When the inputs become equal/greater than (3), c*g(n) will be better than f(n).
 - \rightarrow We can say that c*g(n) better that f(n) when n>=1

Examples of Theta Notation

EXAMPLE OF THETA NOTATION

Assume $\mathbf{f}(\mathbf{n}) = 4n + 8$, $\mathbf{g}(\mathbf{n}) = n$, prove that: $\mathbf{f}(\mathbf{n}) = \Theta(\mathbf{g}(\mathbf{n}))$

Hint: c1*g(n) = n, c2*g(n) = 11n

Solution:

$$c1*g(n) \le f(n) \le c2*g(n)$$

to prove that equation, we must find no that make the previous equation correct.

$$\rightarrow$$
 c1*g(n) \leq f(n)

$$no = 1$$
, \rightarrow (1) <= 4(1) + 8 \rightarrow 1 <= 12 (**True**)

- \triangleright When the inputs become equal/greater than (1), c1*g(n) will be better than f(n).
 - \rightarrow We can say that c1*g(n) better that f(n) when n>= 1, f(n) = Ω (c1*g(n))

EXAMPLE OF THETA NOTATION

 \triangleright Assume $\mathbf{f}(\mathbf{n}) = 4\mathbf{n} + 8$, $\mathbf{g}(\mathbf{n}) = \mathbf{n}$, prove that: $\mathbf{f}(\mathbf{n}) = \Theta(\mathbf{g}(\mathbf{n}))$

Hint: c1*g(n) = n, c2*g(n) = 11n

Solution:

$$c1*g(n) \le f(n) \le c2*g(n)$$

to prove that equation, we must find no that make the previous equation correct.

$$\rightarrow f(n) \le c2*g(n)$$

$$n_0 = 1$$
, $\rightarrow 4(1) + 8 <= 11(1) $\rightarrow 12 <= 11$ (False)$

no = 2,
$$\rightarrow$$
 4(2) + 8 <= 11(2) \rightarrow 16 <= 22 (**True**)

- \triangleright When the inputs become equal/greater than (2), c2*g(n) will be worse than f(n).
 - \rightarrow We can say that c2*g(n) worse that f(n) when n>= 2, f(n) = O(c1*g(n))

USES OF ASYMPTOTIC NOTATION

- 1. To represent the best, average, and worst case of algorithms. (will see that later).
- 2. To compare between the different algorithms. (Here, the notation will be given).
 - We will prove that **algorithm A** is better, equal, or worse than **algorithm B**, by using the **mathematical equations and finding n0.**

Note: in some cases we determine no and find c which makes the equation correct.

- **3.**To compare between the different algorithms. (Here, the notation **won't be given**).
 - Here, you **must determine** which one of the algorithms is better, equal, or worse than the other then represent it by notations.

EXAMPLE(1) OF BIG NOTATION (FIND C)

Assume $\mathbf{f}(\mathbf{n}) = 2n + 5$, $\mathbf{g}(\mathbf{n}) = n$, prove that: $\mathbf{f}(\mathbf{n}) = O(\mathbf{g}(\mathbf{n}))$

Hint: assume $n_0 = 1$, don't forget that c and no is positive values.

Solution:

$$f(n) \le c*g(n)$$

to prove that equation, we must find c that make $f(n) \le c*g(n)$.

$$> no = 1, \rightarrow 2(1) + 5 <= c(1) \rightarrow 7 <= c \rightarrow c = 7$$

$$\geq g(n) = 7n$$

EXAMPLE(2) OF OMEGA NOTATION (FIND C)

ightharpoonup Assume $\mathbf{f}(\mathbf{n}) = 5\mathbf{n}$, $\mathbf{g}(\mathbf{n}) = \mathbf{n} + 4$, prove that: $\mathbf{f}(\mathbf{n}) = \Omega(\mathbf{g}(\mathbf{n}))$

Hint: assume $n_0 = 2$, don't forget that c and no is positive values.

Solution:

$$f(n) \ge c*g(n)$$

to prove that equation, we must find c that make $f(n) \ge c*g(n)$.

$$>$$
 no = 2, \rightarrow 5(2) >= c(2) + 4 \rightarrow 10>= 2c + 4 \rightarrow c = 3

$$\geq$$
 g(n) = 3n + 4

Which function is bigger n^2 n^3 ??

• one option: n=2 2^2 2^3 n=3

$$n^2 < n^3$$

One option apply log to the both sides:

 $\log n^2 \qquad log n^3$ $2 \log n < 3 \log n$

LOGARITHMS

 In algorithm analysis we often use the notation "log n" without specifying the base

Binary logarithm
$$\log n = \log_2 n$$
 $\log^k n = (\log n)^k$

Natural logarithm $\ln n = \log_e n$ $\log \log n = \log(\log n)$
 $\log x^y = y \log x$
 $\log xy = \log x + \log y$
 $\log \frac{x}{y} = \log x - \log y$
 $\log_a x = \log_a b \log_b x$

 $a^{\log_b x} = x^{\log_b a}$

Which function is bigger $n^2 \log n > n(\log n)^{10}$??

One option apply log to the both sides:

$$\begin{array}{ll} log(n^2*logn) & log(n*(logn)^{10}) \\ logn^2 + loglogn & logn + log(logn)^{10} \\ \textbf{2logn} + loglogn & \geq \textbf{logn} + 10(loglogn) \\ f(n) = \Omega(g(n)) & \end{array}$$

Which function is bigger $3n^{\sqrt{n}} > 2^{\sqrt{n}logn}$??

• One option apply change log to the both sides:

$$\log 3n^{\sqrt{n}}$$
 $\log 2^{\sqrt{n\log n}}$ $\sqrt{n \log 3n}$ $\sqrt{n \log n} * \log_2 2$ $\sqrt{n \log 3n}$ $\geq \sqrt{n \log}$ $f(n) = \Omega(g(n))$

$$3n^{\sqrt{n}}$$
 $2^{\log n^{\sqrt{n}}}$ $3n^{\sqrt{n}}$ $(n^{\sqrt{n}})^{\log 2}$ $3n^{\sqrt{n}} \ge n^{\sqrt{n}}$ $f(n) = \Omega(g(n))$

Which function is bigger $n^{logn} < 2^{\sqrt{n}}$??

One option apply log to the both sides:

$$\begin{array}{ll} log n^{log n} & log 2^{\sqrt{n}} \\ \\ log n * log n & \sqrt{n} * log 2 \\ \\ log^2 n & \geq & \sqrt{n} \\ \\ f(n) = \Omega(g(n)) \end{array}$$

Which function is bigger $2^n < 2^{2n}$??

One option apply change log to the both sides:

log2ⁿ log2²ⁿ

nlog2 2nlog2

n < 2n

f(n) = O(g(n))

For each of the following pairs of functions, either f(n) is O(g(n)), f(n) is $\Omega(g(n))$, or f(n) is O(g(n)). Determine which relationship is correct.

-
$$f(n) = n$$
; $g(n) = log n^2$ $f(n) = \Omega(g(n))$

-
$$f(n) = \log \log n$$
; $g(n) = \log n$ $f(n) = O(g(n))$

-
$$f(n) = n \log n + n$$
; $g(n) = \log n$ $f(n) = \Omega(g(n))$

-
$$f(n) = 10$$
; $g(n) = log 10$ $f(n) = Θ(g(n))$

-
$$f(n) = 2^n$$
; $g(n) = 10n^2$ $f(n) = \Omega(g(n))$

-
$$f(n) = 2^n$$
; $g(n) = 3^n$ $f(n) = O(g(n))$

SMALL-O AND SMALL-W

Informal Definition. f is said to be o(g) if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

Notation	Order of Growth Relation	Example
f = O(g)	$f \leq g$	If $f = O(n^2)$, examples for f could be: n^2 , $3n^2 + n$, $5n - 1$, $7n \log n + 5n$, \sqrt{n}
f = o(g)	f < g	If $f = o(n^2)$, examples for f could be: $n^{1.9}$, $5n - 1$, $7n \log n + 5n$, \sqrt{n}
$f = \Omega(g)$	$f \ge g$	If $f = \Omega(n^2)$, examples for f could be: n^2 , $3n^2 + n$, $5n^3$, $7n^5$, 2^n
$f = \omega(g)$	f > g	If $f = \omega(n^2)$, examples for f could be: $n^{2.01}$, $n^2 \log n$, $5n^3$, $7n^5$, 2^n
$f = \Theta(g)$	f = g	If $f = \Theta(n^2)$, examples for f could be: n^2 , $3n^2$, $5n^2 - n$, $7n^2 + n \log n + 100$

END OF CHAPTER2/PART2