
ANALYSIS OF ALGORITHMS

Chapter2/Part2

Prepared by: Enas Abu Samra

KEY POINTS OF CHAPTER2

• Analysis of Algorithms.

• Calculating the Running Time of a program.

• Order of Growth.

• Best Case, Average Case, Worst Case.

• Analyzing the Time Efficiency of non-recursive Algorithms.

• Analyzing the Time Efficiency of recursive Algorithms.

What is the Asymptotic Notations?

TIME COMPLEXITY -ASYMPTOTIC ANALYSIS

• The efficiency of an algorithm depends on the amount of time, storage and other

resources required to execute the algorithm. The efficiency is measured with the help

of asymptotic notations.

• An algorithm may not have the same performance for different types of inputs.

With the increase in the input size, the performance will change.

• The study of change in performance of the algorithm with the change in the order

of the input size is defined as asymptotic analysis.

ASYMPTOTIC ANALYSIS

ASYMPTOTIC NOTATIONS

• Asymptotic notations are the mathematical notations used to describe the

running time of an algorithm when the input tends towards a particular value or a

limiting value.

• There are mainly three asymptotic notations:

✓ Big-O notation → O

✓ Omega notation → Ω

✓ Theta notation → Θ

ASYMPTOTIC NOTATIONS

The most common Asymptotic Notation for calculating Algorithm’s complexities are:

➤ Big-O Notation

Big-O notation represents the upper bound of the running time of an algorithm. Thus, it

gives the worst-case complexity of an algorithm.

➤ Big- Ω Notation

Omega notation represents the lower bound of the running time of an algorithm. Thus, it

provides the best-case complexity of an algorithm.

➤ Big- ΘNotation

Theta notation encloses the function from above and below. Since it represents the upper

and the lower bound of the running time of an algorithm, it is used for analyzing the

average-case complexity of an algorithm.

Why we use the Asymptotic Notations?

CASE STUDY (1)

• Suppose we have values in this array, and we want to search for number 3.

✓ If number 3 is in the first place, how many steps does it take to reach it? ➔ 1 step.

✓ If number 3 is in the middle of array, how many steps does it take to reach it? ➔ (n-1)/2 steps.

✓ If number 3 is in the last place, how many steps does it take to reach it? ➔ (n-1) steps.

CASE STUDY(1)

✓ If number 3 is in the first place, we called this case ➔ Best Case. (minimum number of steps).

✓ If number 3 is in the middle of array, we called this case ➔ Average Case. (average number of

steps).

✓ If number 3 is in the last place, we called this case ➔ Worst Case. (maximum number of steps).

• How to represent these cases in algorithm analysis?

Using the asymptotic notations.

Note:

In the previous case (Linear Search), the complexity is :

Best case ➔ Ω(n), Average case ➔ Θ (n), Worst case ➔ O(1)

CASE STUDY (2) – WHO IS BETTER?

CASE STUDY (2) – WHO IS BETTER?

ORDER OF GROWTH –EXAMPLE(1)

ORDER OF GROWTH-EXAMPLE(2)

ORDER OF GROWTH

ORDER OF GROWTH

COMMON TIME COMPLEXITY

O(c) = 1, c: any constant

O(log logn)

O(logn) ➔ O(√n) ≈ O(nc), 0 < c < 1 ➔ O(√n)

O(√n logn) ➔ (logn * logn) ➔ (logn) 2

O(n)

O(nlogn) ➔ O(logn!)

O(nc), c ≥ 2

O(cn), c> 1

O(n!)

O(nn)

RE AS ONS FOR T HE NE E D FOR AS YM PTOT I C NOTAT I ONS

➢ The algorithm may have more than one time complexity for different cases.

 Example➔ case study (1), three time complexity.

➢ To compare between the different algorithms.

 Example➔ case study (2), the algorithm A is better/equal/wore than algorithm B.

Description of the Asymptotic Notations

BIG-O NOTATION (WORST CASE)

➢Given f(n) and g(n) - functions defined for positive

integers:

 Then f(n) = O(g(n))

• If there exists a positive constant c (c ≥1) such that:

f(n) ≤ c*g(n)

for all sufficiently large positive integers n, (n ≥no).

• The Big O notation defines an upper bound of an

algorithm, it bounds a function only from above.

Ω NOTATION (BEST CASE)

➢Given f(n) and g(n) - functions defined for positive

integers:

 Then f(n) = Ω(g(n))

If there exists a positive constant c (c ≥1) such that:

f(n) ≥ c*g(n)

 for all sufficiently large positive integers n, (n ≥no).

➢ The Omega Ω notation defines an lower bound of an

algorithm, it bounds a function only from below.

➢ Since the best-case performance of an algorithm is

generally not useful, the Omega notation is the least used

notation among all three.

THETA-Θ NOTATION

➢Given f(n) and g(n) - functions defined for positive integers:

 Then f(n) = Θ(g(n))

If there exists two positive constants c1 and c2 (c1, c2 ≥1) such that:

 c1*g(n) ≤ f(n) ≤ c2 * g(n)

for all sufficiently large positive integers n, (n ≥no).

➢ The above definition means, if f(n) is theta of g(n), then the value f(n) is

always between cl*g(n) and c2*g(n) for large values of n (n >= no).

➢ The theta notation bounds a functions from above and below, so it

defines exact asymptotic behavior.

➢ Combine between the big and omega notations.

Examples of Big Notation

EXAMPLE(1) OF BIG NOTATION

➢Assume f(n) = 2n + 5, g(n) = n, prove that: f(n) = O(g(n))

Hint: c*g(n) = 3n, don't forget that c and no is positive values.

Solution:

f(n) ≤ c*g(n)

to prove that equation, we must find n0 that make f(n) ≤ c*g(n).

no = 1, ➔ 2(1) + 5 <= 3(1) ➔ 7<= 3 (False)

no = 2, ➔ 2(2) + 5 <= 3(2) ➔ 9<= 6 (False)

no = 3, ➔ 2(3) + 5 <= 3(3) ➔ 11<= 9 (False)

no = 4, ➔ 2(4) + 5 <= 3(4) ➔ 13<= 12 (False)

no = 5, ➔ 2(5) + 5 <= 3(5) ➔ 15<= 15 (True)

EXAMPLE(1) OF BIG NOTATION

➢When the input is (5), the two algorithms are equal in the operations number,

but when the inputs become greater than (5), c*g(n) will be worse than f(n).

 ➔ We can say that c*g(n) worse that f(n) when n>5.

EXAMPLE(2) OF BIG NOTATION

➢Assume f(n) = 2n + 5, g(n) = n, prove that: f(n) = O(g(n))

Hint: c*g(n) = 4n, don't forget that c and no is positive values.

Solution:

f(n) ≤ c*g(n)

to prove that equation, we must find n0 that make f(n) ≤ c*g(n).

no = 1, ➔ 2(1) + 5 <= 4(1) ➔ 7<= 4 (False)

no = 2, ➔ 2(2) + 5 <= 4(2) ➔ 9<= 8 (False)

no = 2.5, ➔ 2(2.5) + 5 <= 4(2.5) ➔ 10 <= 10 (True)

EXAMPLE(2) OF BIG NOTATION

➢When the input is (2.5), the two algorithms are equal in the operations number,

but when the inputs become greater than (5), c*g(n) will be worse than f(n).

 ➔ We can say that c*g(n) worse that f(n) when n>2.5

EXAMPLE(3) OF BIG NOTATION

➢Assume f(n) = 2n + 5, g(n) = n, prove that: f(n) = O(g(n))

Hint: c*g(n) = 7n, don't forget that c and no is positive values.

Solution:

f(n) ≤ c*g(n)

to prove that equation, we must find n0 that make f(n) ≤ c*g(n).

no = 1, ➔ 2(1) + 5 <= 7(1) ➔ 7<= 7 (True)

EXAMPLE(3) OF BIG NOTATION

➢When the input is (1), the two algorithms are equal in the operations number,

but when the inputs become greater than (1), c*g(n) will be worse than f(n).

 ➔ We can say that c*g(n) worse that f(n) when n>1

EXAMPLES OF BIG NOTATION

➢ Prove that these functions f(n) are belong/equal to O(g(n)).

➔f(n) = 20n, g(n) = 2^n , Hint: assume c = 1 Sol. n0 = 8

➔f(n) = 2n^2 , g(n) =n!, Hint: assume c = 1 Sol. n0 = 5

➔f(n) = log8n , g(n) = n^3 , Hint: assume c = 2 Sol. n0 = 2

➔f(n) = 10n + 1, g(n) = n , Hint: assume c = 11 Sol. n0 = 1

➔f(n) = 5n^2 + 6n, g(n) = 2^n , Hint: assume c = 1 Sol. n0 = 9

Examples of Omega Notation

EXAMPLE(1) OF OMEGA NOTATION

➢Assume f(n) = 6n, g(n) = n + 5, prove that: f(n) = Ω(g(n))

Hint: c*g(n) = 2n + 5, don't forget that c and no is positive values.

Solution:

f(n) ≥ c*g(n)

to prove that equation, we must find n0 that make f(n) ≥ c*g(n).

no = 1, ➔ 6(1) >= 2(1) + 5 ➔ 6 >= 7 (False)

no = 2, ➔ 6(2) >= 2(2) + 5 ➔ 12 >= 9 (True)

➢When the inputs become equal/greater than (2), c*g(n) will be better than f(n).

 ➔ We can say that c*g(n) better that f(n) when n>= 2

EXAMPLE(2) OF OMEGA NOTATION

➢Assume f(n) = n^2, g(n) = nlogn, prove that: f(n) = Ω(g(n))

Hint: c*g(n) = 5nlogn, don't forget that c and no is positive values.

Solution:

f(n) ≥ c*g(n)

to prove that equation, we must find n0 that make f(n) ≥ c*g(n).

no = 1, ➔ 1^(2) >= 5(1)log(1) ➔ 1>= 0 (True)

➢When the inputs become equal/greater than (1), c*g(n) will be better than f(n).

 ➔ We can say that c*g(n) better that f(n) when n>= 1

EXAMPLE(3) OF OMEGA NOTATION

➢Assume f(n) = 2n^2 , g(n) = n^2 + 3n -1, prove that: f(n) = Ω(g(n))

Hint: c*g(n) = n^2 + 3n -1, don't forget that c and no is positive values.

Solution:

f(n) ≥ c*g(n)

to prove that equation, we must find n0 that make f(n) ≥ c*g(n).

no = 1, ➔ 2(1)^2 >= (1)^2 + 3(1) -1➔ 2 >= 3 (False)

no = 2, ➔ 2(2)^2 >= (2)^2 + 3(2) -1➔ 8 >= 9 (False)

no = 3, ➔ 2(3)^2 >= (3)^2 + 3(3) -1➔ 18 >= 17 (True)

➢When the inputs become equal/greater than (3), c*g(n) will be better than f(n).

 ➔ We can say that c*g(n) better that f(n) when n>= 3

EXAMPLE(4) OF OMEGA NOTATION

➢Assume f(n) = n^2, g(n) = n, prove that: f(n) = Ω(g(n))

Hint: c*g(n) = n, don't forget that c and no is positive values.

Solution:

f(n) ≥ c*g(n)

to prove that equation, we must find n0 that make f(n) ≥ c*g(n).

no = 1, ➔ (1) ^ 2 >= 1 ➔ 1 >= 1 (True)

➢When the inputs become equal/greater than (3), c*g(n) will be better than f(n).

 ➔ We can say that c*g(n) better that f(n) when n>= 1

Examples of Theta Notation

EXAMPLE OF THETA NOTATION

➢Assume f(n) = 4n + 8, g(n) = n, prove that: f(n) = Θ(g(n))

Hint: c1*g(n) = n, c2*g(n) = 11n

Solution:

c1*g(n) ≤ f(n) ≤ c2*g(n)

to prove that equation, we must find n0 that make the previous equation correct.

➔ c1*g(n) ≤ f(n)

no = 1, ➔ (1) <= 4(1) + 8 ➔ 1 <= 12 (True)

➢When the inputs become equal/greater than (1), c1*g(n) will be better than f(n).

 ➔ We can say that c1*g(n) better that f(n) when n>= 1, f(n) = Ω(c1*g(n))

EXAMPLE OF THETA NOTATION

➢Assume f(n) = 4n + 8, g(n) = n, prove that: f(n) = Θ(g(n))

Hint: c1*g(n) = n, c2*g(n) = 11n

Solution:

c1*g(n) ≤ f(n) ≤ c2*g(n)

to prove that equation, we must find n0 that make the previous equation correct.

➔f(n) ≤ c2*g(n)

no = 1, ➔ 4(1) + 8 <= 11(1) ➔ 12 <= 11 (False)

no = 2, ➔ 4(2) + 8 <= 11(2) ➔ 16 <= 22 (True)

➢When the inputs become equal/greater than (2), c2*g(n) will be worse than f(n).

 ➔ We can say that c2*g(n) worse that f(n) when n>= 2, f(n) = O(c1*g(n))

USES OF ASYMPTOTIC NOTATION

1. To represent the best, average, and worst case of algorithms. (will see that later).

2. To compare between the different algorithms. (Here, the notation will be given).

- We will prove that algorithm A is better, equal, or worse than algorithm B, by using the

mathematical equations and finding n0.

Note: in some cases we determine n0 and find c which makes the equation correct.

3.To compare between the different algorithms. (Here, the notation won’t be given).

- Here, you must determine which one of the algorithms is better, equal, or worse than the other

then represent it by notations.

EXAMPLE(1) OF BIG NOTATION
(FIND C)

➢Assume f(n) = 2n + 5, g(n) = n, prove that: f(n) = O(g(n))

Hint: assume n0 = 1, don't forget that c and no is positive values.

Solution:

f(n) ≤ c*g(n)

to prove that equation, we must find c that make f(n) ≤ c*g(n).

➢ no = 1, ➔ 2(1) + 5 <= c(1) ➔ 7<= c ➔ c =7

➢ g(n) = 7n

EXAMPLE(2) OF OMEGA NOTATION
(FIND C)

➢Assume f(n) = 5n , g(n) = n + 4, prove that: f(n) = Ω(g(n))

Hint: assume n0 = 2, don't forget that c and no is positive values.

Solution:

f(n) ≥ c*g(n)

to prove that equation, we must find c that make f(n) ≥ c*g(n).

➢ no = 2, ➔ 5(2) >= c(2) + 4 ➔ 10>= 2c + 4 ➔ c = 3

➢ g(n) = 3n + 4

COMPARISON OF FUNCTIONS

LOGARITHMS

COMPARISON OF FUNCTIONS

COMPARISON OF FUNCTIONS

COMPARISON OF FUNCTIONS

COMPARISON OF FUNCTIONS

COMPARISON OF FUNCTIONS

SMALL-O AND SMALL-W

END OF CHAPTER2/PART2

	Slide 1: Analysis of algorithms
	Slide 2: Key Points of chapter2
	Slide 3
	Slide 4: time complexity -Asymptotic Analysis
	Slide 5: Asymptotic Analysis
	Slide 6: Asymptotic Notations
	Slide 7: Asymptotic Notations
	Slide 8
	Slide 9: Case study (1)
	Slide 10: Case study(1)
	Slide 11: Case study (2) – Who is better?
	Slide 12: Case study (2) – Who is better?
	Slide 13: Order of growth –Example(1)
	Slide 14: Order of growth-example(2)
	Slide 15: Order of growth
	Slide 16: Order of growth
	Slide 17: Common Time complexity
	Slide 18: Reasons for the need for asymptotic notations
	Slide 19
	Slide 20: Big-o notation (Worst case)
	Slide 21: Ω notation (best case)
	Slide 22: Theta-Θ notation
	Slide 23
	Slide 24: Example(1) of big notation
	Slide 25: Example(1) of big notation
	Slide 26: Example(2) of big notation
	Slide 27: Example(2) of big notation
	Slide 28: Example(3) of big notation
	Slide 29: Example(3) of big notation
	Slide 30: Examples of big notation
	Slide 31
	Slide 32: Example(1) of Omega notation
	Slide 33: Example(2) of Omega notation
	Slide 34: Example(3) of Omega notation
	Slide 35: Example(4) of Omega notation
	Slide 36
	Slide 37: Example of Theta notation
	Slide 38: Example of Theta notation
	Slide 39: Uses of Asymptotic Notation
	Slide 40: Example(1) of big notation (Find C)
	Slide 41: Example(2) of Omega notation (Find C)
	Slide 42: Comparison of functions
	Slide 43: logarithms
	Slide 44: Comparison of functions
	Slide 45: Comparison of functions
	Slide 46: Comparison of functions
	Slide 47: Comparison of functions
	Slide 48: Comparison of functions
	Slide 49: Small-o and small-w
	Slide 50: End of Chapter2/Part2

