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KEY POINTS OF CHAPTER?2

Analysis of Algorithms.

Calculating the Running Time of a program.

Order of Growth.

Best Case, Average Case, Worst Case.

Analyzing the Time Efficiency of non-recursive Algorithms.

Analyzing the Time Efficiency of recursive Algorithms.




What is the Asymptotic Notations?




TIME COMPLEXITY -ASYMPTOTIC ANALYSIS

The efficiency of an algorithm depends on the amount of time, storage and other
resources required to execute the algorithm. The efficiency is measured with the help

of asymptotic notations.

An algorithm may not have the same performance for different types of inputs.
With the increase in the input size, the performance will change.

The study of change in performance of the algorithm with the change in the order
of the input size is defined as asymptotic analysis.




ASYMPTOTIC ANALYSIS

Example. Assume n > 10 is the size of an array and we are interested in counting
the number of array accesses an algorithm performs.

e How quickly does the number operations performed grows when the
input size grows (when the array size grows)?

for (i=0; i<n; i++)
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ASYMPTOTIC NOTATIONS

Asymptotic notations are the mathematical notations used to describe the
running time of an algorithm when the input tends towards a particular value or a
limiting value.

There are mainly three asymptotic notations:
Big-O notation - O
Omega notation > Q
Theta notation > ®



ASYMPTOTIC NOTATIONS

The most common Asymptotic Notation for calculating Algorithm’s complexities are:
» Big-O Notation

Big-O notation represents the upper bound of the running time of an algorithm. Thus, it
gives the worst-case complexity of an algorithm.

» Big- Q Notation

Omega notation represents the lower bound of the running time of an algorithm. Thus, it
provides the best-case complexity of an algorithm.

» Big- ®Notation

Theta notation encloses the function from above and below. Since it represents the upper
and the lower bound of the running time of an algorithm, it is used for analyzing the
average-case complexity of an algorithm.



Why we use the Asymptotic Notations?




CASE STUDY (1)

Suppose we have values in this array, and we want to search for number 3.

Example: Linear Search

Array of size n e

Search_value

If number 3 is in the first place, how many steps does it take to reach it? = 1 step.
If number 3 is in the middle of array, how many steps does it take to reach it? =» (n-1)/2 steps.

If number 3 is in the last place, how many steps does it take to reach it? =» (n-1) steps.



CASE STUDY/(1)

If number 3 is in the first place, we called this case = Best Case. (minimum number of steps).

If number 3 is in the middle of array, we called this case =» Average Case. (average number of
steps).

If number 3 is in the last place, we called this case = Worst Case. (maximum number of steps).

How to represent these cases in algorithm analysis?

Using the asymptotic notations.

Note:
In the previous case (Linear Search), the complexity is :

Best case = Q(n), Average case = 0O (n), Worst case = O(1)



CASE STUDY (2) - WHO IS BETTER?

for (int i=0; i < 50 * n; it++)
op();

50n

B for (A8t i=0; i < ¥ n; it+e) n*
op()7

We expressed the number of operations performed by each program as
T,(n) =50n and 7,(n) = n-, which are two functions that have

different values depending on the value of the input size n.

e Which function represents a better running time (less performed operations)?




CASE STUDY (2) - WHO IS BETTER?
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ORDER OF GROWTH -EXAMPLE(1)
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ORDER OF GROWTH-EXAMPLE(2)
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ORDER OF GROWTH

Order of Growth of the running time: How quickly the running time of an algorithm grows as the

input size grows.
Examples: log n, n, n2, n3, 2n, etc.
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ORDER OF GROWTH
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COMMON TIME COMPLEXITY

O(c) =1, c: any constant
O(log logn)
O(logn) = O({n) = O(n°), 0<c<1=> O n)

O(/'n logn) = (logn * logn) = (logn) 2

O(n) log,n =1
I

O(nlogn) =>» O(logn!) log1l =0

o(n%), ¢>2

O(cM, c>1

O(n!)

O(n")



REASONS FOR THE NEED FOR ASYMPTOTIC NOTATIONS

The algorithm may have more than one time complexity for different cases.

Example=>» case study (1), three time complexity.

To compare between the different algorithms.

Example=>» case study (2), the algorithm A is better/equal/wore than algorithm B.



Description of the Asymptotic Notations




BIG-O NOTATION (WORST CASE)

Given f(n) and g(n) - functions defined for positive
Integers:

c g(n)

f(n)
Then f(n) = O(g(n))

If there exists a positive constant ¢ (¢ >1) such that:
f(n) < c¢*g(n)
for all sufficiently large positive integers n, (n >no).

The Big O notation defines an upper bound of an
algorithm, it bounds a function only from above.

f(n) = O(g(n))




Q NOTATION (BEST CASE)

Given f(n) and g(n) - functions defined for positive
Integers:

Then f(n) = Q(g(n))
If there exists a positive constant ¢ (¢ >1) such that:
f(n) > c*g(n)
for all sufficiently large positive integers n, (n >no).

The Omega Q notation defines an lower bound of an

algorithm, it bounds a function only from below.

Since the best-case performance of an algorithm is

n 0

f(n) = Omega(g(n))

generally not useful, the Omega notation is the least used
notation among all three.




THETA-© NOTATION

Given f(n) and g(n) - functions defined for positive integers:

c2 g(n)
Then f(n) = ®(g(n)) ()
If there exists two positive constants ¢1 and ¢2 (cl, ¢2 >1) such that:
c1*g(n) < f(n) < ¢2 * g(n)
for all sufficiently large positive integers n, (n >no). cl g(n)

The above definition means, if f(n) is theta of g(n), then the value f(n) is
always between cl*g(n) and c2*g(n) for large values of n (n >= no). '

The theta notation bounds a functions from above and below, so it -

defines exact asymptotic behavior.
Combine between the big and omega notations. f(n) = theta(g(n))




Examples of Big Notation




EXAMPLE(1) OF BIG NOTATION

Assume f(n) =2n + 5, g(n) =n, prove that: f(n) = O(g(n))
Hint: c*g(n) = 3n, don't forget that ¢ and no is positive values.
Solution:

f(n) < c*g(n)
to prove that equation, we must find no that make f(n) < c*g(n).

no=1, = 2(1)+5 <= 3(1)
nn=2, = 2(2)+5 <= 3(2)
nn=3, = 2(3)+5 <= 3(3)
Nno=4, = 2(4)+5 <= 3(4)
no=5 = 2(5)+5 <= 3(5)

7<=3 (False)
9<=6 (False)
11<=9 (False)
13<=12 (False)
15<= 15 (True)

v v ¥V ¥V




EXAMPLE(1) OF BIG NOTATION

When the input is (5), the two algorithms are equal in the operations number,
but when the inputs become greater than (5), c*g(n) will be worse than f(n).

=» \We can say that c*g(n) worse that f(n) when n>5.

f(n)=2n+5
35

28

21
gn)=n
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EXAMPLE(2) OF BIG NOTATION

Assume f(n) =2n + 5, g(n) =n, prove that: f(n) = O(g(n))
Hint: c*g(n) = 4n, don't forget that ¢ and no is positive values.
Solution:

f(n) < c*g(n)
to prove that equation, we must find no that make f(n) < c*g(n).

no=1 = 2(1)+5 <= 4(1) = 7<=4 (False)
Nnn=2, = 2(2)+5 <= 4(2) = 9<=8 (False)
No=25 = 2(25)+5 <= 4(25) = 10<=10 (True)




EXAMPLE(2) OF BIG NOTATION

When the input is (2.5), the two algorithms are equal in the operations number,
but when the inputs become greater than (5), c*g(n) will be worse than f(n).

=» We can say that c*g(n) worse that f(n) when n>2.5

f(n)=2n+35
35
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EXAMPLE(3) OF BIG NOTATION

Assume f(n) =2n + 5, g(n) =n, prove that: f(n) = O(g(n))
Hint: c*g(n) = 7n, don't forget that ¢ and no is positive values.

Solution:
f(n) < c*g(n)

to prove that equation, we must find no that make f(n) < c*g(n).

no=1 = 2(1)+5 <= 7(1) = 7<=7 (True)



EXAMPLE(3) OF BIG NOTATION

When the input is (1), the two algorithms are equal in the operations number,
but when the inputs become greater than (1), c*g(n) will be worse than f(n).

=» \We can say that c*g(n) worse that f(n) when n>1

f(n) =2n+5
35
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EXAMPLES OF BIG NOTATION

Prove that these functions f(n) are belong/equal to O(g(n)).

f(n) = 20n, g(n) =2”n, Hint: assumec =1 Sol.no=8
f(n) = 2n"2 , g(n) =n!, Hint: assume c =1 Sol.no=5
f(n) = log8n, g(n) =n”"3 , Hint: assume ¢ = 2 Sol.no=2
f(n)=10n+ 1, g(n)=n, Hint: assume c =11 Sol.no=1
f(n) = 5n"2 + 6n, g(n) = 2”n, Hint: assume c =1 Sol.no=9




Examples of Omega Notation




EXAMPLE(1) OF OMEGA NOTATION

Assume f(n) = 6n, g(n) =n+5, prove that: f(n) = Q(g(n))
Hint: c*g(n) = 2n + 5, don't forget that ¢ and no is positive values.
Solution:

f(n) = c*g(n)

to prove that equation, we must find no that make f(n) > c*g(n).

no=1 = 6(1) >= 2(1)+5 => 6>=7 (False)
Nnn=2, = 6(2) >= 2(2)+5 = 12>=9 (True)

When the inputs become equal/greater than (2), c*g(n) will be better than f(n).
=>» We can say that c*g(n) better that f(n) when n>= 2




EXAMPLE(2) OF OMEGA NOTATION

Assume f(n) = n”"2, g(n) = nlogn, prove that: f(n) = Q(g(n))
Hint: c*g(n) = 5nlogn, don't forget that ¢ and no is positive values.

Solution:
f(n) = c*g(n)

to prove that equation, we must find no that make f(n) > c*g(n).
no=1, = 1%2)>= 5(1)log(l) = 1>=0 (True)

When the inputs become equal/greater than (1), c*g(n) will be better than f(n).
=» We can say that c*g(n) better that f(n) when n>=1



EXAMPLE(3) OF OMEGA NOTATION

Assume f(n) =2n"2, g(n) =n”2 + 3n -1, prove that: f(n) = Q(g(n))
Hint: c*g(n) = n”*2 + 3n -1, don't forget that ¢ and no Is positive values.
Solution:

f(n) = ¢*g(n)
to prove that equation, we must find no that make f(n) > c*g(n).
no=1, = 2(1)"2 >= (1)"2+3(1) -1=> 2>=3 (False)
no=2, = 2(2)"2 >= (2)"2+3(2) -1 8>=9 (False)
no=3, = 2(3)"2 >= (3”2 +3(3)-1=> 18>=17 (True)

When the inputs become equal/greater than (3), c*g(n) will be better than f(n).
=>» We can say that c*g(n) better that f(n) when n>= 3




EXAMPLE(4) OF OMEGA NOTATION

Assume f(n) = n”"2, g(n) = n, prove that: f(n) = Q(g(n))
Hint: c*g(n) = n, don't forget that ¢ and no Is positive values.

Solution:

f(n) = c*g(n)
to prove that equation, we must find no that make f(n) > c*g(n).
nn=1 = (1)"2>=1=> 1>=1 (True)

When the inputs become equal/greater than (3), c*g(n) will be better than f(n).
=» We can say that c*g(n) better that f(n) when n>=1



Examples of Theta Notation




EXAMPLE OF THETA NOTATION

Assume f(n) =4n + 8, g(n) =n, prove that: f(n) = ®(g(n))
Hint: c1*g(n) = n, c2*g(n) = 11n
Solution:
cl*g(n) < f(n) < c2*g(n)
to prove that equation, we must find no that make the previous equation correct.
= cl1*g(n) < f(n)
no=1 = (1)<= 4(1)+8=> 1<=12 (True)
When the inputs become equal/greater than (1), c1*g(n) will be better than f(n).
=> We can say that c1*g(n) better that f(n) when n>= 1, f(n) = Q(c1*g(n))




EXAMPLE OF THETA NOTATION

Assume f(n) =4n + 8, g(n) =n, prove that: f(n) = ®(g(n))
Hint: c1*g(n) = n, c2*g(n) = 11n

Solution:
cl*g(n) < f(n) < c2*g(n)
to prove that equation, we must find no that make the previous equation correct.
f(n) < c2*g(n)

no=1, = 4(1)+8 <=11(1) = 12<=11 (False)

no=2, = 4(2)+8 <=11(2) = 16 <=22 (True)
When the inputs become equal/greater than (2), c2*g(n) will be worse than f(n).
=>» We can say that c2*g(n) worse that f(n) when n>= 2, f(n) = O(c1*g(n))




USES OF ASYMPTOTIC NOTATION

1. To represent the best, average, and worst case of algorithms. (will see that later).
2. To compare between the different algorithms. (Here, the notation will be given).

- We will prove that algorithm A is better, equal, or worse than algorithm B, by using the
mathematical equations and finding no.

Note: in some cases we determine no and find ¢ which makes the equation correct.
3.To compare between the different algorithms. (Here, the notation won’t be given).

- Here, you must determine which one of the algorithms is better, equal, or worse than the other
then represent it by notations.



EXAMPLE(1) OF BIG NOTATION
(FIND C)

Assume f(n) =2n + 5, g(n) =n, prove that: f(n) = O(g(n))
Hint: assume no = 1, don't forget that ¢ and no is positive values.

Solution:
f(n) < c*g(n)

to prove that equation, we must find ¢ that make f(n) < c*g(n).

no=1 = 2(1)+5<=c¢c(1) = 7<=c = ¢ =7
g(n) = 7n




EXAMPLE(2) OF OMEGA NOTATION
(FIND C)

Assume f(n) =5n, g(n) =n+ 4, prove that: f(n) = Q(g(n))
Hint: assume no = 2, don't forget that ¢ and no is positive values.
Solution:

f(n) = ¢*g(n)

to prove that equation, we must find ¢ that make f(n) > c*g(n).

no=2, = 5(2)>=c(2)+4 = 10>=2c+4 = c=3
g(n)=3n+4




COMPARISON OF FUNCTIONS

Which function is bigger n? n3??

«  one option: n=2 2°
n=3

* One option apply log to the both sides:
log n* logn®
2logn < 3logn




LOGARITHMS

» |In algorithm analysis we often use the notation “log n”

without specifying the base

Binary logarithm lg n = log: 1 |09_“ N = (109,,)’-'
Natural logarithm In» = loge 77 loglogn = log(logn)
logx* = ylogx

logxy = logx +logy

X
log—= logx—logy
)!
log, x= log, blog, x
logsx logsa

= X




COMPARISON OF FUNCTIONS

Which function is bigger n’logn > n(logn)1° ?7?

* One option apply log to the both sides:

log(n? * logn) log(n * (logn)'?)
logn® + loglogn logn+ log(logn)*?
2logn + loglogn > logn + 10(loglogn)

f(n) = Q(g(n))




COMPARISON OF FUNCTIONS

Which function is bigger 3nV® > 2vVnrlogn 55

* One option apply change log to the both sides:

log3n™®
Vn log3n
Vn log3n

log2nlogn 3n'0
Vn logn = log,2 3p'R
> Vnlog 3’0 >

f(n) = Q(g(n)) f(n) = Q(g(n))

g lo gn"'rll

( n'n )logz




COMPARISON OF FUNCTIONS

Which function is bigger nf?9" = 2V 27

* One option apply log to the both sides:

lognlosn log2™™
logn * logn V'n * log2
log?n = V' n

f(n) = Q(g(n))




COMPARISON OF FUNCTIONS

Which function is bigger 27 < 227 ?7?

* One option apply change log to the both sides:

log2n log2-n
nlog2 2nlog?2
n = 2n

f(n) = O(g(n))




COMPARISON OF FUNCTIONS

For each of the following pairs of functions, either f(n) is
O(g(n)), f(n) is Q(g(n)), or f(n) is ©(g(n)). Determine
which relationship is correct.

- f(n) = n; g(n) = log n® f(n) = ©(g(n))
- f(n) = log log n; g(n) = log n f(n) = O(g(n))
- f(n)=nlogn+n; g(n) = logn f(n) = Q(g(n))
- f(n) = 10; g(n) = log 10 f(n) = ©(g(n))
- f(n) = 2~ g(n) = 10n? f(n) = ©(g(n))

- f(n) =2 g(n) = 3" f(n) = O(g(n))




SMALL-O AND SMALL-W

Informal Definition. f 1s said to be o(g) if 1t grows strictly slower than g.

Informal Definition. f 1s said to be @(g) if 1t grows strictly faster than g.

Order of Growth

Notation S Example
f=0(g) f<g If./ =7()(n“), examples for f could be:
n°,3n"+n, 5Sn—1, Tnlogn + 5n, \/;
- If f = o(n~), examples for fcould be:
f =0 f<s n'®, Sn—1, Tnlogn+5n, \/n
_ Hf= Q(n?), examples for f could be:
J =4N5) fzg n2, 3n’4n, 50 7Tn’, 2"
_ If f = w(n”), examples for f could be:
f— a)(g) f> £ nZ.()l’ nzlogn’ 5"3, 7n5, on
f=6(g) = If f = O(n?), examples for f could be:

n%, 3n% 5n®>—n, Tn*+nlogn+ 100




END OF CHAPTER2/PART?2
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