INTRODUCTION TO GRAPHS AND TREES

Chapter 6 — Partl

Prepared by: Enas Abu Samra

KEY POINTS OF CHAPTER ©

Graphs and Trees.

Graphs Terminology.

Categories of Graphs.

Types of Graphs.

Trees Terminology.

Key Differences Between Graphs and Trees.

Representation of Graphs and Trees in Computers.

TREES AND GRAPHS

Trees and graphs are both abstract data structures. They are a non-linear collection of
objects, which means that there is no sequence between their elements as it exists in
a linear data structures like stacks and queues.

Trees and graphs are data structures used to resolve various complex problems.

Graphs

GRAPHS

A graph can also be defined as a collection of
entities called vertices (nodes/points), connected
to each other through a set of edges. The set of
edges (lines/arcs) describes the relationships
between the vertices.

A graph G is defined as follows: G=(V, E)
V(G): a finite, nonempty set of vertices.
E(G): a set of edges.

V={a, b, c, d, e}
E={(ab),(ad),(ae),(bc),(be),(cd),(ed)}

GRAPHS TERMINOLOGY

Vertex: each node of the graph.

Edge: a path or a line between two vertices.

Path: a sequence of edges between the two vertices.
Cycle: a path where the first and last vertices are the same.

Adjacency: two nodes or vertices are adjacent if they are connected to each other
through an edge.

ADJACENCY

In a graph, two vertices are said to be adjacent, if there is an edge between the two
vertices. Here, the adjacency of vertices is maintained by the single edge that is
connecting those two vertices.

In a graph, two edges are said to be adjacent, if there is a common vertex between
the two edges. Here, the adjacency of edges is maintained by the single vertex that is

connecting two edges.

ADJACENCY

In the following graph:

‘a' and 'd' are the adjacent vertices, as
there is a common edge 'ad' between them.

‘a'’ and 'b' are the adjacent vertices, as
there is a common edge 'ab' between them.

‘ab' and 'be' are the adjacent edges, as
there is a common vertex 'b' between them.

LI

o

O e

CATEGORIES OF GRAPHS

Graphs can be:
Directed vs Undirected
Weighted vs Unweighted
Connected vs Disconnected
Cyclic vs Acyclic.

Sparse vs Dense.

UNDIRECTED AND DIRECTED GRAPHS

When the edges in a graph have no direction, the graph is called undirected.

When the edges in a graph have a direction, the graph is called directed (or digraph).

DEGREE IN DIRECT AND UNDIRECT GRAPH

Degree in undirected graphs:
Degree(V) = # of adjacent (incident) edges to vertex v in G.

Y degrees = 2 |E|

Degree in directed graphs:
In-Deg(V) = # of incoming edges.
Out-Deg(V) = # of outgoing edges.
Y In-degree = X Out-degree = |E|

DEGREE IN DIRECT AND UNDIRECT GRAPH

\T d) 3 \" /d\
—~ (2 / o
(L) v\ V,
(¢ L —(¢)
vertex degree vertex In-degree 'Out-degree1
a 2 a 0 2
b 3 b 1 2
c B c 3 1
d 3 d 1 2
e 2 e 2 0

WEIGHTED AND UNWEIGHTED GRAPH

If edges in the graph have weights, then the graph is said to be a weighted graph, if
the edges do not have weights, the graph is said to be unweighted.

A weight is a numerical value attached to each individual edge.

Weights may represent distance, cost, time etc.

Unweighted Graph Weighted undirected Graph Weighted directed Graph

CONNECTIVITY:

CONNECTED AND DISCONNECTED GRAPH

A graph is said to be connected if there is a path between every pair of vertices. From
every vertex to any other vertex, there should be some path to traverse.

It is possible to travel from one vertex to any other vertex.

a‘ b
e E d =
\\\ -
N [

® »

C d b C f
It can traverse from Traversing from vertex 'a’ Not possible to traverse to 'a’
vertex 'a’ to vertex 'e' to vertex 'f' is not possible

using the path 'a-b-e'". - No Path

CYCLIC AND ACYCLIC GRAPH

A graph is said to have a cycle if you start from a
node/vertex and after traversing some nodes, you
come to the same node, then you can say that the
graph is having a cycle.

If there is a cycle in a graph, then that graph is
called Cyclic Graph. If there is no cycle present in
the graph, then that graph is called an Acyclic
Graph.

For a Cyclic Graph, at least one cycle is
necessary.

___\lil "JJ .
V]_ | _\\ ';‘
__%2 J "r
_ :
/X Acydic Graph p
(VJ _,I /V] .‘.
y/ 3-/ .

Vl ‘: Vz \\]

- e
Acyclic Graph
& G
o

- \

shows the existence
of cycle

— Red dotted lime -~~~

SPARSE AND DENSE GRAPH

Sparse Graph: A graph in which the
number of edges is much less than the
possible number of vertices.

Sparse Graph: A sparse graph is a graph
G = (V, E) in which |E| = O(|V)).

Dense Graph: A graph in which the
number of edges is close to the possible
number of vertices. (a)

(b)

Dense Graph: A dense graph is a graph
G = (V, E) in which [E| = O(|V]Y).

TYPES OF GRAPHS

Null Graph.
Multi Graph.
Regular Graph.
Complete Graph.

NULL GRAPH

A null graph is a graph containing no edges.

®
® ©

PARALLEL EDGES AND MULTI GRAPH

Parallel Edges

In a graph, if a pair of vertices is connected by more than c
one edge, then those edges are called parallel edges.

In the following example: 'a" and 'c' are the two vertices

which are connected by two edges 'ac' and 'ca’ between
them.

Multi Graph p
1

A graph having parallel edges is known as a Multigraph. 5

REGULAR GRAPH

Regular graph is a graph where each vertex has the same number of neighbors
(every vertex has the same degree).

1-regular 2-regular 3-regular 4-regular 5-regular

COMPLETE GRAPH

A graph G is Complete Graph (G,) if every node

u in G is adjacent to every other node v in G. .
A complete graph is already connected. K2
of edges = n(n-1)/2

K5

K3

K6

K4

K7

Trees

TREES

A tree is a nonlinear data structure, compared to arrays, linked lists, stacks and queues
which are linear data structures.

A tree can be empty with no nodes, or a tree is a structure consisting of one node
called the root and zero or one or more subtrees.

They don’t have any cyclic relations and there is only one path to a particular node.

A tree must be connected which means there must be a path from the root to all
other nodes.

TREES TERMINOLOGY

Root: the top (initial) node of the tree, where all the operations start.
Node: each item in the tree, usually a key-value.

Edge: a tree has n-1 edges (where n is the number of nodes) representing the
connection between two nodes.

Parent: a node which is a predecessor of any node.
Child: a node which is descendant of any node.
Siblings: a group of nodes which have the same parent.

Leaf (terminal) node: a node without children.

TREES TERMINOLOGY

Level: is the number of edges on the path from the root node to n.

The level of the root node is zero.

Also, it defined as 1 + the number of edges between the node and the root.

Height: the number of edges from its root to the furthest leaf.

Sub-tree: a portion of a tree data structure that can be viewed as a complete tree in itself

There are different types of trees that you can work with, like Binary Tree, Binary Search
Tree, Red-Black tree, AVL tree, Heap, etc. The deciding factor of which tree type to use is
performance. Since trees are data structures, performance is measured in terms of
Inserting and retrieving data.

TREES TERMINOLOGY

Height of
the tree

Tree Data Structure

Root Key

Parent

(0 (0 s B Y B (N
—— _f:——____\:'_'f-'::_____ b X ; P
—_— :_—_:_—_:—;:;"—'—-_ || ____,..::'—'—':"-:' ——

Leaf Nodes

Level O

Level 1

Level 2

Level3

Level 4

Key Differences
Between Graphs and Trees

KEY DIFFERENCES
BETWEEN GRAPHS AND TREES

Trees and graphs are mainly differentiated by the fact that a tree structure must be
connected and can never have loops while in the graph there are no such restrictions.

In trees, all nodes must be reachable from the root and there must be exactly one
possible path from the root to a node. In graphs, there are no rules dictating the
connections among the nodes.

Main use of graphs is coloring and job scheduling, on the other hand main use of
trees is for sorting and traversing.

KEY DIFFERENCES
BETWEEN GRAPHS AND TREES

In graphs, the number of edges doesn’t depend on the number of vertices. On the
contrary, if a tree has “n” vertices (nodes) then it must have exactly “n-1” edges.

There must be a root node in a tree while there is no such concept in a graph.

Basically speaking, a tree is just a restricted form of a graph (connected acyclic
graph). Also known as a minimally connected graph. That makes graphs more
complex structures compared to the trees due to the loops and circuits, which they

may have.

EXAMPLE OF ATREE AND A GRAPH

Representation of Graphs and Trees in Computers

Representation of Graphs in Computers

GRAPH REPRESENTATION

Different data structures for the representation of graphs are used in practice:
Adjacency Matrix.
Adjacency List.

Incidence Matrix.

GRAPH REPRESENTATION: ADJACENCY MATRIX

A two-dimensional matrix, in which the rows represent source vertices and columns

represent destination vertices. Only the cost for one edge can be stored between each
pair of vertices.

Size: V x V, where is the number of vertices in the Graph.

adjMatrix[i][j] = 1 when there is an edge b/w Vertex i and Vertex j, else 0.

GRAPH REPRESENTATION: ADJACENCY MATRIX

Representation is easier to implement and follow.

Removing an edge takes O(1) time.

Queries like whether there is an edge from vertex 'u’ to vertex 'v' are efficient and
can be done O(1).

Consumes more space O(V/2). Even if the graph is sparse (contains less number
of edges), it consumes the same space.

Adding a vertex is O(V"2) time.

GRAPH REPRESENTATION: ADJACENCY LIST

Adjacency List is the Array[] of Linked List, where array size is same as number of
vertices in the graph. Every Vertex has a Linked List.

Each node in this linked list represents the reference to the other vertices which share

an edge with the current vertex. The weights can also be stored in the linked list
node.

GRAPH REPRESENTATION: ADJACENCY LIST

Save space O(|V|+|E|).
Adding a vertex is easier.
Support Sequential Search Only.

GRAPH REPRESENTATION

Adjacency
Matrix
Adjacency
List

1 2 3 4
1 o 2 / 1 4] 1 (4] (4]
2 > 4 / 2 4] 4] 4] 1
3 > 1 — 2 — 5 / 3 1 1]]
4 » & / 4 0] 4] 4] 4]
5 > 2 — 4 —t 3] / 5 4] 1 0 1
6 o / & 4] (4] (4] (4]

GRAPH REPRESENTATION

Adjacency

Adjacency
List
1
1 8]
—1>| 3 /
2 1
> —1>| 3 —t>| 4 —»| s /
3 1
> —>»| 2 —t>»| 5 /
<1 0
> —>| 5 —>| & /
5 0
> — > 3 —> ! —> & /
[5] 0
> —_—> 5 /

Matrix
3 4
1 0
1 1
0 0
0 0
1 1
0 1

Representation of Trees in Computers

TREE REPRESENTATION

Different data structures for the representation of trees are used in practice:
Arrays
Linked List
Single linked list
Double linked list

TREE REPRESENTATION: ARRAY

To represent a binary tree of depth 'n' using array representation, we need one dimensional
array with a maximum size of 2n + 1.

If the node is at i-th index
Left child at: [(2*1) +1]
Right child at: [(2* 1)+2]
Parent: floor [(i-1)/2]

TREE REPRESENTATION: ARRAY

(7 (3 ol 7[sfs]1]=2]4]

| 9 I 7 | 3 Inu11|nu11| 2 Ir\ull

TREE REPRESENTATION:
SINGLE LINKED LIST

Two types of nodes are used: one for representing the node with data called 'data node’
and another for representing only references called 'reference node".

(a) (b)

TREE REPRESENTATION:
DOUBLE LINKED LIST

In a doubly-linked list, every node consists of three fields. The first field is for storing
the left child address, the second for storing actual data, and the third for storing the
right child address.

Left Child Data | Right Child
Address Address

ks 2
® =
el T / .
g o 1 |. .'I 4
3 - |I I.'
- ‘\\\ ‘: ', : I 4 - / i - ,'I

/,
(v

@ @ NULL NULL . | II 12 L NULL NULL

| |
; W 7

NULL NULL NULL MNULL

END OF CHAPTER 6 - PART1

	Slide 1: Introduction to Graphs and trees
	Slide 2: Key Points of chapter 6
	Slide 3: Trees and graphs
	Slide 4
	Slide 5: Graphs
	Slide 6: Graphs terminology
	Slide 7: Adjacency
	Slide 8: Adjacency
	Slide 9: Categories of graphs
	Slide 10: Undirected and Directed Graphs
	Slide 11: Degree in direct and undirect graph
	Slide 12: Degree in direct and undirect graph
	Slide 13: Weighted and Unweighted Graph
	Slide 14: Connectivity: Connected and Disconnected Graph
	Slide 15: Cyclic and Acyclic Graph
	Slide 16: Sparse and Dense Graph
	Slide 17: types of graphs
	Slide 18: Null graph
	Slide 19: Parallel Edges and Multi Graph
	Slide 20: Regular Graph
	Slide 21: Complete Graph
	Slide 22
	Slide 23: Trees
	Slide 24: Trees Terminology
	Slide 25: Trees Terminology
	Slide 26: Trees Terminology
	Slide 27
	Slide 28: Key differences between Graphs and Trees
	Slide 29: Key differences between Graphs and Trees
	Slide 30: Example of a tree and a Graph
	Slide 31
	Slide 32
	Slide 33: Graph representation
	Slide 34: Graph representation: Adjacency Matrix
	Slide 35: Graph representation: Adjacency Matrix
	Slide 36: Graph representation: Adjacency list
	Slide 37: Graph representation: Adjacency list
	Slide 38: Graph representation
	Slide 39: Graph representation
	Slide 40
	Slide 41: tree representation
	Slide 42: tree representation: array
	Slide 43: tree representation: array
	Slide 44: tree representation: Single Linked List
	Slide 45: tree representation: Double Linked List
	Slide 46: End of Chapter 6 – Part1

