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KEY POINTS OF CHAPTER 6

• Graphs and Trees.

• Graphs Terminology.

• Categories of Graphs.

• Types of Graphs.

• Trees Terminology.

• Key Differences Between Graphs and Trees.

• Representation of Graphs and Trees in Computers.



TREES AND GRAPHS

• Trees and graphs are both abstract data structures. They are a non-linear collection of 

objects, which means that there is no sequence between their elements as it exists in 

a linear data structures like stacks and queues.

• Trees and graphs are data structures used to resolve various complex problems. 



Graphs



GRAPHS

• A graph can also be defined as a collection of 

entities called vertices (nodes/points), connected 

to each other through a set of edges. The set of 

edges (lines/arcs) describes the relationships 

between the vertices.

• A graph G is defined as follows: G=(V, E)

V(G): a finite, nonempty set of vertices.

E(G): a set of edges.

• V={a, b, c, d, e}

• E={(ab),(ad),(ae),(bc),(be),(cd),(ed)}



GRAPHS TERMINOLOGY

• Vertex: each node of the graph.

• Edge: a path or a line between two vertices.

• Path: a sequence of edges between the two vertices.

• Cycle: a path where the first and last vertices are the same.

• Adjacency: two nodes or vertices are adjacent if they are connected to each other 

through an edge.



ADJACENCY

• In a graph, two vertices are said to be adjacent, if there is an edge between the two 

vertices. Here, the adjacency of vertices is maintained by the single edge that is 

connecting those two vertices.

• In a graph, two edges are said to be adjacent, if there is a common vertex between 

the two edges. Here, the adjacency of edges is maintained by the single vertex that is 

connecting two edges.



ADJACENCY

• In the following graph:

✓ 'a' and 'd' are the adjacent vertices, as 

there is a common edge 'ad' between them. 

✓ 'a' and 'b' are the adjacent vertices, as 

there is a common edge 'ab' between them.

✓ ' ab' and 'be' are the adjacent edges, as 

there is a common vertex 'b' between them.



CATEGORIES OF GRAPHS

• Graphs can be:

✓Directed  vs  Undirected

✓Weighted vs Unweighted

✓Connected vs Disconnected

✓Cyclic vs Acyclic.

✓Sparse vs Dense.



UNDIRECTED AND DIRECTED GRAPHS

• When the edges in a graph have no direction, the graph is called undirected.

• When the edges in a graph have a direction, the graph is called directed (or digraph).



DEGREE IN DIRECT AND UNDIRECT GRAPH

• Degree in undirected graphs:

• Degree(V) = # of adjacent (incident) edges to vertex v in G.

• Σ degrees = 2 |E|

• Degree in directed graphs:

• In-Deg(V) = # of incoming edges.

• Out-Deg(V) = # of outgoing edges.

• Σ In-degree = Σ Out-degree = |E|



DEGREE IN DIRECT AND UNDIRECT GRAPH



WEIGHTED AND UNWEIGHTED GRAPH

• If edges in the graph have weights, then the graph is said to be a weighted graph, if 

the edges do not have weights, the graph is said to be unweighted.

• A weight is a numerical value attached to each individual edge. 

• Weights may represent distance, cost, time etc.



CONNECTIVITY: 
CONNECTED AND DISCONNECTED GRAPH

• A graph is said to be connected if there is a path between every pair of vertices. From 

every vertex to any other vertex, there should be some path to traverse.

• It is possible to travel from one vertex to any other vertex. 

It can traverse from 

vertex 'a' to vertex 'e' 

using the path 'a-b-e'.

Not possible to traverse to 'a'Traversing from vertex 'a' 

to vertex 'f' is not possible 

- No Path



CYCLIC AND ACYCLIC GRAPH

• A graph is said to have a cycle if you start from a 

node/vertex and after traversing some   nodes, you 

come to the same node, then you can say that the 

graph is having a cycle.

• If there is a cycle in a graph, then that graph is 

called Cyclic Graph. If there is no cycle present in 

the graph, then that graph is called an Acyclic 

Graph.

•

• For a Cyclic Graph, at least one cycle is 

necessary.



SPARSE AND DENSE GRAPH

• Sparse Graph: A graph in which the 

number of edges is much less than the 

possible  number of vertices.

• Sparse Graph: A sparse graph is a graph 

G = (V, E) in which |E| = O(|V|).

• Dense Graph: A graph in which the

number of edges is close to the possible 

number of vertices.

• Dense Graph: A dense graph is a graph 

G = (V, E) in which |E| = O(|V|2).



TYPES OF GRAPHS

✓Null Graph.

✓Multi Graph.

✓Regular Graph.

✓Complete Graph.



NULL GRAPH

• A null graph is a graph containing no edges.



PARALLEL EDGES AND MULTI GRAPH

• Parallel Edges

✓ In a graph, if a pair of vertices is connected by more than 

one edge, then those edges are called parallel edges.

✓ In the following example: 'a' and 'c' are the two vertices 

which are connected by two edges 'ac' and 'ca' between 

them.

• Multi Graph

✓A graph having parallel edges is known as a Multigraph.



REGULAR GRAPH

• Regular graph is a graph where each vertex has the same number of neighbors 

(every vertex has the same degree).

1-regular 4-regular2-regular 3-regular 5-regular



COMPLETE GRAPH

• A graph G is Complete Graph (GN) if every node 

u in G is adjacent to every other node v in G.

• A complete graph is already connected.

• # of edges = n(n-1)/2



Trees



TREES

• A tree is a nonlinear data structure, compared to arrays, linked lists, stacks and queues 

which are linear data structures.

• A tree can be empty with no nodes, or a tree is a structure consisting of one node 

called the root and zero or one or more subtrees.

• They don’t have any cyclic relations and there is only one path to a particular node.

• A tree must be connected which means there must be a path from the root to all 

other nodes.



TREES TERMINOLOGY

• Root: the top (initial) node of the tree, where all the operations start.

• Node: each item in the tree, usually a key-value.

• Edge: a tree has n-1 edges (where n is the number of nodes) representing the 

connection between two nodes.

• Parent: a node which is a predecessor of any node.

• Child: a node which is descendant of any node.

• Siblings: a group of nodes which have the same parent.

• Leaf (terminal) node: a node without children.



TREES TERMINOLOGY

• Level: is the number of edges on the path from the root node to n. 

The level of the root node is zero.

Also, it defined as 1 + the number of edges between the node and the root. 

• Height: the number of edges from its root to the furthest leaf.

• Sub-tree: a portion of a tree data structure that can be viewed as a complete tree in itself

• There are different types of trees that you can work with, like Binary Tree, Binary Search 

Tree, Red-Black tree, AVL tree, Heap, etc. The deciding factor of which tree type to use is 

performance. Since trees are data structures, performance is measured in terms of 

inserting and retrieving data.



TREES TERMINOLOGY



Key Differences 

Between Graphs and Trees



KEY DIFFERENCES 
BETWEEN GRAPHS AND TREES

• Trees and graphs are mainly differentiated by the fact that a tree structure must be 

connected and can never have loops while in the graph there are no such restrictions.

• In trees, all nodes must be reachable from the root and there must be exactly one 

possible path from the root to a node. In graphs, there are no rules dictating the 

connections among the nodes. 

• Main use of graphs is coloring and job scheduling, on the other hand main use of 

trees is for sorting and traversing.



KEY DIFFERENCES 
BETWEEN GRAPHS AND TREES

• In graphs, the number of edges doesn’t depend on the number of vertices. On the 

contrary, if a tree has “n” vertices (nodes) then it must have exactly “n-1” edges.

• There must be a root node in a tree while there is no such concept in a graph.

• Basically speaking, a tree is just a restricted form of a graph (connected acyclic 

graph). Also known as a minimally connected graph. That makes graphs more 

complex structures compared to the trees due to the loops and circuits, which they 

may have.



EXAMPLE OF A TREE AND A GRAPH



Representation of Graphs and Trees in Computers



Representation of Graphs in Computers



GRAPH REPRESENTATION

• Different data structures for the representation of graphs are used in practice: 

1. Adjacency Matrix.

2. Adjacency List.

3. Incidence Matrix.



GRAPH REPRESENTATION: ADJACENCY MATRIX

• A two-dimensional matrix, in which the rows represent source vertices and columns 

represent destination vertices. Only the cost for one edge can be stored between each 

pair of vertices.

• Size: V × V, where is the number of vertices in the Graph.

• adjMatrix[i][j] = 1 when there is an edge b/w Vertex i and Vertex j, else 0.



GRAPH REPRESENTATION: ADJACENCY MATRIX

• Representation is easier to implement and follow.

• Removing an edge takes O(1) time.

• Queries like whether there is an edge from vertex 'u' to vertex 'v' are efficient and 

can be done O(1).

• Consumes more space O(V^2). Even if the graph is sparse (contains less number 

of edges), it consumes the same space.

• Adding a vertex is O(V^2) time.



GRAPH REPRESENTATION: ADJACENCY LIST

• Adjacency List is the Array[] of Linked List, where array size is same as number of 

vertices in the graph. Every Vertex has a Linked List. 

• Each node in this linked list represents the reference to the other vertices which share 

an edge with the current vertex. The weights can also be stored in the linked list 

node.



GRAPH REPRESENTATION: ADJACENCY LIST

• Save space O(|V|+|E|).

• Adding a vertex is easier.

• Support Sequential Search Only.



GRAPH REPRESENTATION



GRAPH REPRESENTATION



Representation of Trees in Computers



TREE REPRESENTATION

• Different data structures for the representation of trees are used in practice: 

1. Arrays

2. Linked List

✓ Single linked list

✓ Double linked list



TREE REPRESENTATION: ARRAY

• To represent a binary tree of depth 'n' using array representation, we need one dimensional 

array with a maximum size of 2n + 1.

• If the node is at i-th index

✓ Left child at: [(2*i) +1]

✓ Right child at: [(2* i)+2]

✓ Parent: floor [(i-1)/2]



TREE REPRESENTATION: ARRAY



TREE REPRESENTATION:
SINGLE LINKED LIST

• Two types of nodes are used: one for representing the node with data called 'data node' 

and another for representing only references called 'reference node'.



TREE REPRESENTATION:
DOUBLE LINKED LIST

• In a doubly-linked list, every node consists of three fields. The first field is for storing 

the left child address, the second for storing actual data, and the third for storing the 

right child address.



END OF CHAPTER 6 – PART1


	Slide 1: Introduction to Graphs and trees
	Slide 2: Key Points of chapter 6
	Slide 3: Trees and graphs
	Slide 4
	Slide 5: Graphs
	Slide 6: Graphs terminology
	Slide 7: Adjacency
	Slide 8: Adjacency
	Slide 9: Categories of graphs
	Slide 10: Undirected and Directed Graphs
	Slide 11: Degree in direct and undirect graph
	Slide 12: Degree in direct and undirect graph
	Slide 13: Weighted and Unweighted Graph
	Slide 14: Connectivity:  Connected and Disconnected Graph 
	Slide 15: Cyclic and Acyclic Graph
	Slide 16: Sparse and Dense Graph
	Slide 17: types of graphs
	Slide 18: Null graph
	Slide 19: Parallel Edges and Multi Graph
	Slide 20: Regular Graph
	Slide 21: Complete Graph
	Slide 22
	Slide 23: Trees
	Slide 24: Trees Terminology
	Slide 25: Trees Terminology
	Slide 26: Trees Terminology
	Slide 27
	Slide 28: Key differences  between Graphs and Trees
	Slide 29: Key differences  between Graphs and Trees
	Slide 30: Example of a tree and a Graph
	Slide 31
	Slide 32
	Slide 33: Graph representation
	Slide 34: Graph representation: Adjacency Matrix
	Slide 35: Graph representation: Adjacency Matrix
	Slide 36: Graph representation: Adjacency list
	Slide 37: Graph representation: Adjacency list
	Slide 38: Graph representation
	Slide 39: Graph representation
	Slide 40
	Slide 41: tree representation
	Slide 42: tree representation: array
	Slide 43: tree representation: array
	Slide 44: tree representation: Single Linked List
	Slide 45: tree representation: Double Linked List
	Slide 46: End of Chapter 6 – Part1 

