ALGORITHMS FOR GRAPHS AND TREES

Chapter 6 — Part2

Prepared by: Enas Abu Samra

KEY POINTS OF CHAPTER 6

Graph and Tree Traversal (Search) Algorithms.
Depth First Search.
Breadth First Search.
Spanning Tree and Minimum Spanning Tree (MST).
Two Greedy Algorithms For MSP:
Kruskal’s Algorithm.
Prim’s Algorithm.
Shortest Path Algorithms in Graphs
Dijkstra’s Algorithm.
Bellman-ford Algorithm.
The Difference Between MST and The Shortest Path.

Graph and Tree Traversal (Search) Algorithms

Graphs Traversal Algorithms

GRAPHS TRAVERSAL ALGORITHMS

There are many traversal algorithms in Graphs:
Depth-First-Search (DFS)
Breadth-First-Search (BFS)

In DFS, the node branch is explored as far as possible before being forced to backtrack
and expand other nodes. (using stack)

In BFS, all the node neighbors are all explored at the present depth prior to moving on to
the nodes at the next depth level. (using queue)

Time Complexity of DFS and BFS = O(V+E) where V is vertices and E is edges.

DEPTH-FIRST-SEARCH (DFS)

Procedure DFS (L: adjacency L.ist, v: vertex)
Initialize stack.
visit, mark and push(v)
while stack is nonempty do
while there is an unmarked vertex w adjacent to top (stack) do

visit, mark and push(w)
end
pop(stack) // the top(stack) was completely explored

end

APPLYING DFS ALGORITHMS
ON GRAPHS

Stack

DFS traversal of given graph is:
1,2,6,3,8,7,4,5

APPLYING DFS ALGORITHMS

ON GRAPHS

Stack

33303

22222

-

©,
F
\(%) ©

Depth First Traversal-01345 2

©

BREADTH-FIRST-SEARCH (BFS)

Procedure BFS (L: adjacency List, v: vertex)
Initialize the queue Q
visit and mark v
enqueue (v, Q)
while Qis nonempty do
x= the next vertex in the queue Q
for each unmarked vertex w adjacent to x do
visit and mark w
enqueue(w, Q)
end

remove X from the queue Q

end

APPLYING BFS ALGORITHMS
ON GRAPHS

Graph

Queue

1333313

iiiiii

BFS starting from Node O

012345

APPLYING BFS ALGORITHMS
ON GRAPHS

Queue

Tyt

33333383

Start at node (0) = BFS: 0, 1,3,2,5,6,4

Trees Traversal Algorithms

TREES TRAVERSAL ALGORITHMS

Traversal is a process to visit all the nodes of a tree.

Generally, we traverse a tree to search or locate a given item or key in the tree or to print all
the values it contains.

Because all nodes are connected via edges (links) we always start from the root (head) node.
You cannot randomly access a node in a tree.
There are two ways to perform the traversal:
Depth First Traversals:
In-order (Left, Root, Right).
Pre-order (Root, Left, Right).
Post-order (Left, Right, Root).

Breadth First or Level Order Traversal

IN-ORDER ALGORITHM

In-Order Algorithm (Left, Root, Right)
Until all nodes are traversed:
Step 1: Recursively traverse left subtree.
Step 2: Visit root node.

Step 3: Recursively traverse right subtree.

PRE-ORDER ALGORITHM

Pre-Order Algorithm (Root, Left, Right)
Until all nodes are traversed:

Step 1: Visit root node.

Step 2: Recursively traverse left subtree.

Step 3: Recursively traverse right subtree.

IN-ORDER ALGORITHM

Post-Order Algorithm (Left, Right, Root)
Until all nodes are traversed:
Step 1: Recursively traverse left subtree.
Step 2: Recursively traverse right subtree.

Step 3: Visit root node.

APPLYING DFS AND BFS ALGORITHMS
ON TREES

Inorder : DBHEIAFCG
Preorder : ABDEHICFG
Postorder : DHIEBFGCA

BFSorder=> ABCDEFGH I

APPLYING DFS AND BFS ALGORITHMS
ON TREES

» Preorder traversal yvields:
A,B,D,C,E,G,F,H, 1

» Postorder traversal yvields:
D,B,G,E,H, I F, C, A

» Inorder traversal yields:
D,B, A,E, G,C,H,F, I

» Levelorder traversal vields:
A, B, C,D, E,F, G, H, 1

Binary Tree Pre, Post, Inorder and level order Traversing

Spanning Tree
and
Minimum Spanning Tree (MST)

SPANNING TREE

A spanning tree of a graph G is a
subgraph of G that iIs a tree that
contains all the vertices of G with no
cycles.

A single graph can have many
different spanning trees.

GENERAL PROPERTIES OF SPANNING TREE

All possible spanning trees of graph G, have the same number of edges and vertices.
The spanning tree does not have any cycle (loops).
Removing one edge from the spanning tree will make the graph disconnected.

Adding one edge to the spanning tree will create a circuit or loop.

MINIMUM SPANNING TREE (MST)

A minimum spanning tree (MST) or minimum weight spanning tree is a subset
of the edges of a connected, edge-weighted undirected graph that connects all
the vertices together, without any cycles and with the minimum possible total
edge weight.

That is, it Is a spanning tree whose sum of edge weights is as small as possible.

If each edge has a distinct weight, then there will be only one, unique minimum
spanning tree.

MINIMUM SPANNING TREE (MST)

/;\': > /DH:}
- -
> 2
N Y
\E:/ 1 \E__,f"l
— 5
@) aA—D2) @A @ @& D)
bk bk :
(B © (B) © ®) : © @& C)

542+4=11 54544 = 14 5+1+4 =10 24+5+1 = 8

TWO GREEDY ALGORITHMS FOR MST

Kruskal's Algorithm

Adds edges one by one into a growing spanning tree.

Prim's Algorithm

Attaches vertices to a partially built tree by adding small- cost edges repeatedly.

Kruskal's Algorithm for Finding MST

KRUSKAL'S ALGORITHM FOR FINDING MST

This algorithm was described by Joseph Bernard Kruskal, Jr. in 1956.

Kruskal's Algorithm builds the spanning tree by adding edges one by one into a growing
spanning tree. Kruskal's algorithm follows the greedy approach as in each iteration it
finds an edge that has the least weight and adds it to the growing spanning tree.

KRUSKAL'S ALGORITHM STEPS

Stepl: Sort all the edges in ascending order of their weight.
Step2: Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far.
If a cycle is not formed, include this edge. Else, discard it.

Step3: Repeat step#2 until number of edges become (v-1) in the spanning tree or all vertices
are included.

COMPLEXITY OF KRUSKAL'S ALGORITHM

In Kruskal's algorithm, most time-consuming operation is sorting because the
total complexity of the Disjoint-Set operations will be O(ElogV), which is the

overall Time Complexity of the algorithm.
Space Complexity = O(E+V)

ad

bc

dc

fe

ab

bd

ce

cf

df

N o n|(hAh[DM|W|IN|DN(DN

KRUSKAL'S ALGORITHM EXAMPLE(1)

Create 6 disjoints sets = {a}, {b}, {c}, {d}, {e}, {f}.

{a, d}, {b}. {c}, {e}. {f} @ 2 ()
{a, d}, {b, c}, {e}, {f} \r/
{a, b, c, d}, {e}, {f} 4 /

{a, b, c, d}, {e, f}

2
{a, b c d, e f} 4
OmuO
5 N/

OV | 0 (N[N [N | D[N DN]|—

o

~

KRUSKAL'S ALGORITHM EXAMPLE (2)

Create 9 disjoints sets =

{a}, {b}, {c}, {d}, {e}, {f}, {a}, {n}, {i}
{a}, {b}, {c}, {d}, {e}, {t}, {g, h}, {i} 4
{a}, {b}, {c, 1}, {d}, {e}, {f}. {9, h}
{a}, {b}, {c, i}, {d}, {e}, {f, g, h}
{a, b}, {c, i}, {d}, {e}, {f, g, h}

{a, b}, {c, 1,1, g, h}, {d}, {e} h

{a, b, c, i, f, g h} {d}, {e} -

11

{a,b,c, 1,1 g,h,d}, {e}
{a,b,c,1,f g, hd e}

Prim's Algorithm for Finding MST

PRIM'S ALGORITHM FOR FINDING MST

Prim's Algorithm also use Greedy approach to find the minimum spanning tree. In
Prim's Algorithm we grow the spanning tree from a starting position.

Unlike an edge in Kruskal's, we add vertex to the growing spanning tree in Prim's.
Idea = Add nearest vertex just beyond the frontier

Prim's algorithm starts with the single node and explores all the adjacent nodes with all
the connecting edges at every step. The edges with the minimal weights causing no
cycles in the graph got selected.

PRIM'S ALGORITHM STEPS

Stepl: Remove all loops and parallel edges from the given graph. In case of parallel
edges, keep the one which has the least cost associated and remove all others.

Step2: Initialize an MST with the randomly chosen vertex.

Step3: Find all the edges that connect the tree in the above step with the new vertices.
From the edges found, select the minimum edge and add it to the tree.

Step4: Repeat step 3 until the minimum spanning tree is formed.

COMPLEXITY OF PRIM’S ALGORITHM

If the graph G is represented as an adjacency matrix, the time complexity is = O(V/2)

If the graph G is represented as an adjacency list, the time complexity is = O(ElogV)

PRIM'S ALGORITHM EXAMPLE (1)

PRIM'S ALGORITHM EXAMPLE (2)

Shortest Path Algorithms in Graphs

SHORTEST PATH ALGORITHMS IN GRAPHS

> w e

The shortest path problem is about finding a path between two vertices in a graph such that
the total sum of the weights of the edges is minimum (Optimization Problem).

There are different methods for Finding the Shortest Path in a Graph:
Depth-First Search (DFS)

Breadth-First Search (BFS)

Dijkstra's algorithm

. Bellman-Ford Algorithm

The choice of the proper algorithm depends on the use-case.

SHORTEST PATH ALGORITHMS IN GRAPHS

The problem for finding the shortest path can be categorized as:

Single-source the shortest path: In this, the shortest path is calculated from a source
vertex to all other vertices present inside the graph.

Single-destination the shortest path: In this, the shortest path is calculated from all
vertices in the directed graph to a single destination vertex. This can be converted into a
single pair with the shortest path problem by reversing the edges of the directed graph.

All pairs the shortest path: In this, the shortest path is calculated between every pair of
vertices.

Dijkstra’s Algorithm

DIJKSTRA'S ALGORITHM

Dijkstra's algorithm has many variants but the most common one is to find the shortest paths
from the source vertex to all other vertices in the graph.

Single Source Shortest Path Algorithm

Any vertex can be selected as a source.
Dijkstra uses greedy approach.
It can be applied to directed and undirected connected Graphs.

Dijkstra doesn't work for Graphs with negative weight edges.

DIJKSTRA'S ALGORITHM STEPS

Stepl: Mark your selected initial node with a current distance of 0 and the rest with infinity.
Step2: Set the non-visited node with the smallest current distance as the current node.
For each neighbor N of your current node C.:
Add the current distance of C with the weight of the edge connecting C-N.
If it's smaller than the current distance of N, set it as the new current distance of N.
Step3: Mark the current node C as visited.

Step4: If there are non-visited nodes, go to step 2.

RELAXATION PROCESS

If (d(u) + c(u,v) < d(v)) Then
d(v) = d(u) + c(u, v)

d(u)=5 d(v) =9 d(u)=5

d(v) =17

@c(u,v)za < > @ cfu,v)=8 @

(5+8)<9=> (13)<9NO!!, so d(v)=9 (5+8) <17 < (13) <17 YES!, so d(v) = 13

COMPLEXITY OF DIJKSTRA'S ALGORITHM

If the graph G is represented as an adjacency matrix, the time complexity is = O(V/2)
If the graph G is represented as an adjacency list, the time complexity is = O(ElogV)
Space complexity = O(E + V)

DIJKSTRA'S ALGORITHM EXAMPLE (1)

2

3 2

Shortest Path Tree

DIJKSTRA'S ALGORITHM EXAMPLE (2)

12

14

4
/]
8 * |l a4 oo\ 8
7
8

9

19

6 —5

1

/21

Bellman-Ford Algorithm

BELLMAN-FORD ALGORITHM (BF)

BF is a single source shortest path algorithm.

BF is slower than Dijkstra's Algorithm, it works in the cases when the weight of the
edge is negative, and it also finds negative weight cycle in the graph.

The idea of this algorithm is to relax all the edges of the graph one-by-one in some
random order at most (n-1) times.

BF uses dynamic programming approach.
The time complexity is: O(VE) or O(V/2).

BELLMAN-FORD ALGORITHM STEPS

Stepl: determine: S =» Starting node, E = # of edges, V =» # of nodes, and D = Array
that tracks the best distance from S to all nodes

Step2: set D[S]to 0
Step3: Set every entry in D to
Step4: Relax each edge V-1 times

DETERMINE NEGATIVE LOOP USING
BELLMAN-FORD ALGORITHM

Bellman-ford algorithm can determine a negative loop (cyclic), if the sum of edges is
negative then the loop is negative (infinite loop) else the loop is not negative.

Example:

Non-Negative Loop Negative Loop

BELLMAN-FORD ALGORITHM EXAMPLE(1)

(ab), (ac), (bd), (cd), (be), (df), (fe), (bf), (cb)

Same,

716 | s | 4] Stop

BELLMAN-FORD ALGORITHM EXAMPLE (1)

N

BELLMAN-FORD ALGORITHM EXAMPLE (2)

Order of edges: (B, E), (D, B), (B, D), (A, B), (A, ©), (D, ©), (B, C), (E, D)

Same,

Stop

BELLMAN-FORD ALGORITHM EXAMPLE (2)

The Difference Between
MST and The Shortest Path

THE DIFFERENCE BETWEEN
MST AND THE SHORTEST PATH

MST Shortest Path

In MST there is no source and no destination, but it
IS the subset (tree) of the graph(G) which connects all There is a source and destination, and one need to

the vertices of the graph G without any cycles and find out the shortest path between them
the minimum possible total edge weight.

Graph (G) should be connected, undirected, edge- It is not necessary for the Graph (G)to be
weighted, labeled. connected, undirected, edge-weighted, labeled.

Here relaxation of edges is not performed but here Here the relaxation of edges is performed.

the minimum edge weight is chosen one by one from
the set of all edge weights (sorted according to min
weight) and the tree is formed by them (i.e. there
should not be any cycle).

THE DIFFERENCE BETWEEN
MST AND THE SHORTEST PATH

MST Shortest Path

A minimum spanning tree can be formed but
negative weights edge cycles are not generally used.
Using the cycle property of MST, the minimum edge
weight among all the edge weights in the negative
edge cycle can be selected.

The negative edge cycle can be detected using the
Bellman-Ford algorithm.

It is used in network design and in circuit design It is used to find out direction between physical
applications, and many more. locations like in Google Maps.

THE DIFFERENCE BETWEEN
MST AND THE SHORTEST PATH

Graph G

i .
Minimum spanning
tree of graph G
1 1 B 1 1
(O)—()

The distance fromAtoCis 3

\J
Distance of the Shortest path

between vertices Aand C is 2

END OF CHAPTER 6 - PART?2

	Slide 1: Algorithms for Graphs and trees
	Slide 2: Key Points of chapter 6
	Slide 3
	Slide 4
	Slide 5: Graphs Traversal algorithms
	Slide 6: Depth-First-Search (DFS)
	Slide 7: Applying DFS algorithms on graphs
	Slide 8: Applying DFS algorithms on graphs
	Slide 9: Breadth-First-Search (BFS)
	Slide 10: Applying bfs algorithms on graphs
	Slide 11: Applying bfs algorithms on graphs
	Slide 12
	Slide 13: trees Traversal algorithms
	Slide 14: In-order algorithm
	Slide 15: pre-order algorithm
	Slide 16: In-order algorithm
	Slide 17: Applying DFS and bfs algorithms on trees
	Slide 18: Applying DFS and bfs algorithms on trees
	Slide 19
	Slide 20: Spanning Tree
	Slide 21: General Properties of Spanning Tree
	Slide 22: Minimum Spanning Tree (MST)
	Slide 23: Minimum Spanning Tree (MST)
	Slide 24: Two Greedy Algorithms for MST
	Slide 25
	Slide 26: Kruskal's Algorithm for finding MST
	Slide 27: Kruskal's Algorithm steps
	Slide 28: Complexity of Kruskal's Algorithm
	Slide 29: Kruskal's Algorithm Example(1)
	Slide 30: Kruskal's Algorithm Example (2)
	Slide 31
	Slide 32: prim's Algorithm for finding MST
	Slide 33: Prim's Algorithm Steps
	Slide 34: Complexity of prim’s Algorithm
	Slide 35: prim's Algorithm Example (1)
	Slide 36: prim's Algorithm Example (2)
	Slide 37
	Slide 38: Shortest path algorithms in graphs
	Slide 39: Shortest path algorithms in graphs
	Slide 40
	Slide 41: Dijkstra's algorithm
	Slide 42: Dijkstra's algorithm Steps
	Slide 43: Relaxation process
	Slide 44: Complexity of Dijkstra's Algorithm
	Slide 45: Dijkstra's Algorithm Example (1)
	Slide 46: Dijkstra's Algorithm Example (2)
	Slide 47
	Slide 48: Bellman-Ford Algorithm (BF)
	Slide 49: Bellman-Ford Algorithm Steps
	Slide 50: Determine negative loop using Bellman-Ford Algorithm
	Slide 51: Bellman-Ford Algorithm Example(1)
	Slide 52: Bellman-Ford Algorithm example (1)
	Slide 53: Bellman-Ford Algorithm Example (2)
	Slide 54: Bellman-Ford Algorithm example (2)
	Slide 55
	Slide 56: the difference between MST and the Shortest path
	Slide 57: the difference between MST and the Shortest path
	Slide 58: the difference between MST and the Shortest path
	Slide 59: End of Chapter 6 – Part2

