Philadelphia University

Faculty of Science

Department of Math

Academic year 2021/2022

UNIVERSITY THE WAY TO THE FUTURE

PHILADELPHIA

Approval date:

Issue:

Credit hours: 3

Course Syllabus

Bachelor

Course information

Course#	Course title			Prere	equisite	
0250109		Mathematics and Biostatistics			Ν	one
Course type			Class	time	Room #	
 University Requirement Major Requirement 		X Faculty Requirement		ST 9:45-1	1:15	21009
				MW 8:15	-9:45	6717
			⊠ Compulsory	MW 11:1	5-12:45	21009

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Feras Awad	822	2132	ST 11:15–12:30 MW 09:45–11:00	fawad@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method				
☐ Physical ☐ Online ☐ Blended				
Learning Model				
Dresentage	Synchronous	Asynchronous	Physical	
Precentage	0%	0%	100%	

Course Description

Preliminaries: Numbers, Algebraic Manipulations. Measurements and Calculations: Scientific Notation, Units Conversion (Length, Volume, Mass, Temperature). Functions and Sequences: Essential Functions, Exponential Functions, Logarithms (Semilog and Log-Log Plots). Descriptive Statistics: Numerical Descriptions of Data (Types of data, Measures of Central Tendency and Spread), Graphical Descriptions of Data, Relationships between Variables (Regression), Populations, Samples, and Inference. Probability: Principles of Counting, What Is Probability? (Experiments, Outcomes, Events), Conditional Probability (Multiplication Rule, Independence), Discrete Random Variables, Continuous Random Variables. Inferential Statistics: The Sampling Distribution (of Mean and Standard Deviation), Confidence Intervals, Hypothesis Testing (t-test, P-value).

Course Learning Outcomes

Number	nber Outcomes				
K1	Know the basic concepts of functions and the accompanying mathematical techniques and procedures.	1			
K2	Organize and interpret data graphically and numerically.	1			
К3	Understand the axioms of probability and use probability rules to evaluate probability of events.	1			
K4	Perform hypothesis tests and construct confidence intervals on the mean and the variance of a normal distribution.	1			
	Skills				
S1	Use computer software like GeoGebra and Google Sheets to do calculations.	9			
S2	S2 Ability to solve basic mathematical problems in medical, pharmaceutical, and life sciences.				
	Competencies				
C1	Thinking reasonably and the ability to make decisions.	3			
C2	Work in a team to implement one of the tasks of the course.	11			

* According to learning outcomes of the faculty of pharmacy.

Learning Resources

Course textbook	Stewart, J. and Day, T. (2016) Biocalculus: Calculus, Probability,		
	and Statistics for the Life Sciences (1 st ed.). Cengage Learning.		
Supporting References	• Greenwell, R. N., Ritchey, N. P., Lial M. L. (2015) Calculus for		
	the Life Sciences (2 nd ed.). Pearson.		
	• Samuels M. L., Witmer J. A., Schaffner A. (2016) Statistics for		
	the Life Sciences (5 th ed.). Pearson.		
Supporting websites	✓ GeoGebra: <u>https://www.geogebra.org/</u>		
	✓ Google Sheets: <u>http://sheets.new/</u>		
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other		

Meetings and Subjects Timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
	Explanation of the study plan for the course, and			Course
1	students.	Lecture		Synabus
	Preliminaries:			Diagnostic
	Numbers, Algebraic Manipulations.			Tests
	Four Ways to Represent a Function:			
2	Representations of Functions, Piecewise Defined	Looturo		Chapter 1
4	Functions, Symmetry, Periodic Functions,	Lecture		Chapter 1
	Increasing and Decreasing Functions.			

			,	
3	A Catalog of Essential Functions: Linear Models, Polynomials, Power Functions, Rational Functions, Algebraic Functions, Trigonometric Functions, Exponential Functions, Logarithmic Functions.	Lecture	Computer Task using GeoGebra	Chapter 1
4	Exponential Functions: The Growth of Malarial Parasites, Exponential Functions, Exponential Growth, HIV Density and Exponential Decay, The Number <i>e</i> .	Lecture		Chapter 1
5	Logarithms; Semilog and Log-Log Plots: Inverse Functions, Logarithmic Functions, Natural Logarithms, Graph and Growth of the Natural Logarithm, Semilog Plots, Log-Log Plots.	Lecture	Quiz	Chapter 1
6	Numerical Descriptions of Data: Types of Variables, Categorical Data, Numerical Data: Measures of Central Tendency, Numerical Data: Measures of Spread, Numerical Data: The Five-Number Summary, Outliers.	Lecture		Chapter 11
7	Graphical Descriptions of Data: Displaying Categorical Data, Displaying Numerical Data: Histograms, Interpreting Area in Histograms, The Normal Curve. Relationships between Variables: Two Categorical Variables, Categorical and Numerical Variables,	Lecture	Computer Task using GeoGebra and/or Google Sheets	Chapter 11
8	Two Numerical Variables. Populations, Samples, and Inference: Populations and Samples, Properties of Samples, Types of Data, Causation	Lecture		Chapter 11
9	Principles of Counting: Permutations, Combinations	Lecture		Chapter 12
10	 What Is Probability? Experiments, Trials, Outcomes, and Events, Probability When Outcomes Are Equally Likely, Probability in General. Conditional Probability: Conditional Probability, The Multiplication Rule and Independence. 	Lecture	Homework	Chapter 12
11	Discrete Random Variables: Describing Discrete Random Variables, Mean and Variance of Discrete Random Variables, Bernoulli Random Variables, Binomial Random Variables	Lecture	Midterm Exam	Chapter 12
12	Continuous Random Variables: Describing Continuous Random Variables, Mean and Variance of Continuous Random Variables, Exponential Random Variables, Normal Random Variables.	Lecture		Chapter 12
13	The Sampling Distribution: Sums of Random Variables, The Sampling Distribution of the Mean, The Sampling Distribution of the Standard Deviation.	Lecture	Quiz	Chapter 13

14	Confidence Intervals: Interval Estimates, Student's <i>t</i> -Distribution	Lecture		Chapter 13
15	Hypothesis Testing: The Null and Alternative Hypotheses, The <i>t</i> -Statistic, The <i>P</i> -Value.	Lecture	Group Case Study	Chapter 13
16	Final Exam			

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology Use GeoGebra to study the properties of different mathematical functions and perform operations on them. Use Google Sheets to perform descriptive and inferential statistics. Communication Skills Writing a report that summarizes real-life data numerically and graphically and represents it to the students in class. Application of Concepts Learnt Making a hypothesis test about the population mean of a real-life case

and publicize a decision about the case.

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	11	K1, K2, C1
Various Assessments *	30%	Continuous	S1, S2, C1, C2
Final Exam	40%	16	K1, K2, K3, K4, C1
Total	100%		

* Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**
	Knowledge		
K1	Know the basic concepts of functions and the accompanying mathematical techniques and procedures.	Lecture	Exam
K2	Organize and interpret data graphically and numerically.	Lecture	Exam
К3	Understand the axioms of probability and use probability rules to evaluate probability of events.	Lecture	Exam
K4	Perform hypothesis tests and construct confidence intervals on the mean and the variance of a normal distribution.	Lecture	Exam

	Skills			
S1	Use computer software like GeoGebra and	Case study	Computer	
	Google Sheets to do calculations.	Cuse study	project	
S2	Ability to solve basic mathematical problems in	Casa study Individual		
	medical, pharmaceutical, and life sciences.	case study proje		
	Competencies			
C1	Thinking reasonably and the ability to make decisions.	Discussion	Quiz	
C2	Work in a team to implement one of the tasks of the course.	Case study	Group project	

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning
 ** Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

	Course Polices
Policy	Policy Requirements
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final mark recorded on transcript is (35%).

Passing Grade	final mark recorded on transcript is (35%).				
Missing Exams	 Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from an exam or assessment due date. A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date. 				
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and seven lectures (S, T, T). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam and the grade in that course is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade will be recorded.				
Academic Honesty	Academic Honesty Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as: cheating, plagiarism (academic theft), collusion, and violating intellectual property rights.				

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
2	Apply concepts and techniques related to the pharmacy knowledge from basic sciences, pharmaceutical and medicinal chemistry, pharmacology, medical sciences, clinical pharmacy, and pharmaceutical practice.	Mathematics and Biostatistics	Statistical Study	100% of the students get 75% or more on the rubric.

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment			
2	Do a statistical study of a real-life problem by testing an appropriate statistical hypothesis in the 15^{th} week.			

Assessment Rubric of the Program Learning Outcome

	Weak (1 pt.)	Not Bad (2 pts)	Good (3 pts)	Excellent (4 pts)
	Student is very confused and does not understand the topic, nor is able to clearly grasp how to apply it or when to use it.	Student has a decent grasp of the process but makes some major mistakes.	Student is almost perfect in their understanding of the topic, with some minor confusion or mistakes.	Student understands the concept perfectly.
State Hypotheses Student should state both hypotheses using the correct parameter, signs, and number on right-hand side	Not all hypotheses are stated.	Hypotheses are clearly stated with major errors.	Hypotheses are clearly stated with minor errors.	Hypotheses are clearly and correctly stated.
Compute Test Statistic Student should use correct test statistic and formula	An inappropriate test statistic is used.	An appropriate test statistic is used and computed with major errors.	An appropriate test statistic is used and computed with minor errors.	An appropriate test statistic is used and computed correctly.
Draw Conclusion Student should find the <i>p</i> -value or look up the critical value and use one to make a conclusion	It is unclear how a conclusion, if any, is made.	The <i>p</i> -value or critical value is determined and used to draw a conclusion. Major errors are present.	The <i>p</i> -value or critical value is determined and used to draw a conclusion. Minor errors are present.	The <i>p</i> -value or critical value is correctly determined and used to draw a correct conclusion.
Interpret Student should interpret the conclusion in layman's terms	Interpretation is out of context.	Interpretation is in context, with major errors.	Interpretation is in context, with minor errors.	Interpretation is correctly and clearly stated in context.