Philadelphia University	PHILADELPHIA UNIVERSITY	Approval date:
Faculty of Science		Issue:
Department of Math		Credit hours: 3
Academic year 2021/2022	Course Syllabus	Bachelor

Course information

Course\#	Course title			Prerequisite
250373	Linear Programming			$\begin{gathered} \hline \text { Linear Algebra } 1 \\ 250241 \\ \hline \end{gathered}$
Course type			Class time	Room \#
University RequirementMajor Requirement	\square Faculty R	rement	$\begin{gathered} \hline \text { SMTWT } \\ \text { 12:40-13:40 } \end{gathered}$	2827
	\square Elective	\boxtimes Compulsory		

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Feras Awad	822	2132	SMTWT $10: 00-11: 00$	fawad@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method			
\boxtimes Physical	\square Online	\square Blended	
Learning Model			
Precentage	Synchronous	Asynchronous	Physical
	$\mathbf{0 \%}$	$\mathbf{0 \%}$	$\mathbf{1 0 0 \%}$

Course Description

What is a Linear Programming (LP) Problem? Modeling LP Problems. The Graphical Solution of Two-Variable LP Problems. The Idea of the Simplex Method. Converting an LP to Standard Form. Basic Feasible Solutions. The Simplex Algorithm. Representing the Simplex Tableau. Solving Minimization Problem. Artificial Starting Solution and the Big M-Method. Special Cases in the Simplex Method: Degeneracy, Alternative Optima, Unbounded Solutions, Nonexisting (or Infeasible) Solutions. Sensitivity Analysis. Finding the Dual of an LP. The Dual Theorem and its Consequences. Shadow Prices. Duality and Sensitivity Analysis. Complementary Slackness. The Dual-Simplex Method. As a supporting theme, the course will also emphasize the use of mathematical solvers such as LINGO, TORA, MATHEMATICA, and EXCEL.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes
Knowledge		
$\mathbf{K 1}$	Define and formulate linear programming problems and determine their limitations.	$\mathbf{K}_{\mathbf{p}} \mathbf{1}, \mathbf{K}_{\mathbf{p}} \mathbf{3}$
$\mathbf{K 2}$	Apply the simplex and the dual-simplex algorithms for solving linear programming problems.	$\mathbf{K}_{\mathbf{p}} \mathbf{3}$
Skills		
$\mathbf{S 1}$	Use computer software like GeoGebra and TORA to solve problems graphically and analytically.	$\mathbf{S}_{\mathbf{p} \mathbf{4}}$
$\mathbf{S 2}$	Ability to solve real-life mathematical problems.	$\mathbf{S}_{\mathbf{p}} \mathbf{3}$
$\mathbf{C} \mathbf{C o m p e t e n c i e s}$		
$\mathbf{C 2}$	Thinking reasonably and the ability to make decisions.	$\mathbf{C}_{\mathbf{p}} \mathbf{1}$

Learning Resources

Course textbook	Feras Awad (2018) Linear Programming (1 ${ }^{\text {st }}$ ed.). Instructor Lectures and Notes.
Supporting References	- Taha, H. (2018) Operations Research: An Introduction (10 ${ }^{\text {th }}$ ed.). Pearson. - Winston, W. (2004) Operations Research: Applications and Algorithms (4 $4^{\text {th }}$ ed.). Cengage.
Supporting websites	GeoGebra: https://www.geogebra.org/
Teaching Environment	区Classroom \square laboratory \square Learning platform \square Other

Meetings and Subjects Timetable

Week	Topic	Learning Methods	Tasks	Learning Material
$\mathbf{1}$	Explanation of the study plan for the course, and what is expected to be accomplished by the students.	Lecture	Course Syllabus	
	Introduction to Linear Programming: Operations Research. What is a Linear Programming (LP) Problem? Modeling LP Problems. Geometric Preliminaries and Solutions: Half- Spaces, Hyperplanes, and Convex Sets	Lecture	Chapter 1	
	The Graphical Solution of Two-Variable LP Problems. The Corner Point Theorem and its Proof. How to use GeoGebra?	Lecture	Homework Computer Task	Chapter 1

3	The Simplex Method: The Idea of the Simplex Method. Converting an LP to Standard Form. Basic Feasible Solutions. The Simplex Algorithm: Iterative Nature of the Simplex Method, Computational Details of the Simplex Algorithm, Representing the Simplex Tableau.	Lecture	Quiz	Chapter 2
4	Solving Minimization Problem. How to use TORA? Artificial Starting Solution and the Big M-Method. Special Cases in the Simplex Method: Degeneracy, Alternative Optima, Unbounded Solutions, Nonexisting (or Infeasible) Solutions.	Lecture	Computer Task	Chapter 2
5	Duality and Sensitivity Analysis: Some Important Formulas. Sensitivity Analysis. Finding the Dual of an LP.	Lecture	Midterm Exam	Chapter 3
6	The Dual Theorem and its Consequences. Shadow Prices. Duality and Sensitivity Analysis.	Lecture	Quiz	Chapter 3
7	Complementary Slackness. The Dual-Simplex Method.	Lecture		Chapter 3
8	Final Exam			

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology

- Use GeoGebra to solve linear programming problems graphically.
- Use TORA to solve linear programming problems analytically by the simplex method and the dual-simplex method.

Communication Skills

- Choose a special case linear programming problem and present it to the students and explaining its solution method.

Application of Concepts Learnt

- Formulate a real-life situation using linear programming and completely solve it graphically (if possible) and analytically and make a sensitivity analysis of the model.

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	$\mathbf{3 0 \%}$	$\mathbf{4}$	K1, K2
Various Assessments *	$\mathbf{3 0 \%}$	Continuous	S1, S2, C1, C2
Final Exam	$\mathbf{4 0 \%}$	$\mathbf{8}$	K1, K2
Total	$\mathbf{1 0 0 \%}$		

[^0]
Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes			Learning Method*	
Kssessment Method**					
K1	Define and formulate linear programming problems and determine their limitations.	Lecture	Exam		
K2	Apply the simplex and the dual-simplex algorithms for solving linear programming problems.	Lecture	Exam		
Skills					
S1	Use computer software like GeoGebra and TORA to solve problems graphically and analytically.	Case Study	Computer Project		
S2 Competencies					
C1	Thinking reasonably and the ability to make decisions.	Discussion	Quiz		
C2	Work in a team to implement one of the tasks of the course.	Case Study	Group Project		

[^1]
Course Polices

| Policy | Policy Requirements |
| :---: | :---: | :---: |
| Passing Grade | The minimum passing grade for the course is (50\%) and the minimum final
 mark recorded on transcript is (35\%). |
| Missing
 Exams | Missing an exam without a valid excuse will result in a zero grade to
 be assigned to the exam or assessment.
 A Student who misses an exam or scheduled assessment, for a
 legitimate reason, must submit an official written excuse within a
 week from an exam or assessment due date.
 A student who has an excuse for missing a final exam should submit
 the excuse to the dean within three days of the missed exam date. |
| Attendance | The student is not allowed to be absent more than (15\%) of the total hours
 prescribed for the course, which equates to six lectures days (M, W) and seven
 lectures (S, T, T). If the student misses more than (15\%) of the total hours
 prescribed for the course without a satisfactory excuse accepted by the dean
 of the faculty, s/he will be prohibited from taking the final exam and the grade
 in that course is considered (zero), but if the absence is due to illness or a
 compulsive excuse accepted by the dean of the college, then withdrawal grade
 will be recorded. |
| Academic
 Honesty | Philadelphia University pays special attention to the issue of academic
 integrity, and the penalties stipulated in the university's instructions are
 applied to those who are proven to have committed an act that violates
 academic integrity, such as: cheating, plagiarism (academic theft), collusion,
 and violating intellectual property rights. |

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
$\mathbf{S}_{\mathbf{p}} \mathbf{3}$	Translating life situations into mathematical models	Linear Programming	Homework	100% of the students get 70% or more on the rubric

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
$\mathbf{S}_{\mathbf{p}} \mathbf{3}$	The student is given a real-life problem, in the 6 ${ }^{\text {th }}$ week, that is compatible with linear programming and formulates it into a mathematical model.

Assessment Rubric of the Program Learning Outcome

	Poor (1 pt.) Student is very confused and does not understand the topic, nor is able to clearly grasp how to apply it or when to use it.	Fair (2 pts) Student has a decent grasp of the process but makes some major mistakes.	Good (3 pts) Student is almost perfect in their understanding of the topic, with some minor confusion or mistakes.	Excellent (4 pts) Student understands the concept perfectly.
Define Variables Number of variables Clarity of the variables	Incorrect number of variables and no explanation of variables used.	Correct number of variables but it is not clear what variables stand for.	Correct number of variables. Complete sentences are not used but it is clear what variables stand for.	Correct number of variables including description of what variable represents in the problem with complete sentences.
Objective Function Clear and correct with justification	Objective function is totally wrong.	Objective function is not fully correct. Some of the variables or coefficients are incorrect	Objective function is correct without a clearly written justification.	Objective function is correct with a clearly written justification.
Constraints Clear and correct with justification	Includes inequalities for constraints with minor errors.	Includes correct inequalities for constraints with no justification.	Includes correct inequalities for constraints with some justification.	Includes correct inequalities for constraints with justification written.

[^0]: * Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

[^1]: * Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning
 ** Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

