Philadelphia University

Faculty of Science

Department of Math

Academic year 2022/2023

UNIVERSITY THE WAY TO THE FUTURE **Course Syllabus**

Approval date:

Issue:

Credit hours: 3

PHILADELPHIA

Bachelor

Course information

Course#	Course title			Prerequisite		
0250101		Calculus 1			None	
Course type			Class	time	Room #	
🗆 University Requi	rement	⊠ Faculty Rec	quirement	ST 14:1	5-15:45	21004
🗆 Major Requirem	ent	\Box Elective	⊠ Compulsory	MW 09:4	5-11:15	21004

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Feras Awad	822	2132	ST 13:00-14:00 MW 11:30-12:30	fawad@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method				
⊠ Physical □ Online □ Blended				
Learning Model				
Dresentage	Synchronous	Asynchronous	Physical	
Precentage	0%	0%	100%	

Course Description

This is a first-year course which covers the following main concepts and topics: Functions: domain, operations, graphs, trigonometric functions, transcendental, functions, inverse functions, logarithms and exponentials, inverse trigonometric functions. Limits: definition, rules, infinite limits and limits at infinity, continuity, continuity of trigonometric functions, Derivative: rules, derivative of trigonometric functions, chain rule, implicit differentiation, Roll's theorem, mean-value-theorem, L'Hopital's rule, increasing and decreasing, extreme values, asymptotes. Integration: anti-derivative, definite and indefinite integrals, fundamental theorem of calculus, area under the curve, area between tow curves.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes *
	Knowledge	
K1	Understand the basic properties of algebraic and transcendental functions, and their operations.	K _p 1
K2	Know the concepts of limits and continuity.	K _p 1
К3	Understand the definition of derivative and integral, and how to differentiation and integration elementary functions.	K _p 1

Skills				
S1	Students should be able to use derivatives and integrals to solve real-life problems involving optimization and areas.	S _p 2		
S2	Use Mathematical Packages, like GeoGebra to solve problems.	S _p 4		
Competencies				
C1	Thinking reasonably and the ability to make decisions.	Cp1		
C2	Work in a team to implement one of the tasks of the course.	Cp2		

* According to learning outcomes of the faculty of pharmacy.

Learning Resources

Course textbook	• Anton H., Bivens I., Davis S. (2011) Calculus: Early		
	Transcendentals (10 th ed.). Wiley.		
Supporting References	• Stewart J. (2015) Calculus: Early Transcendentals (8 th ed.).		
	Brooks Cole.		
Supporting websites	• GeoGebra: <u>https://www.geogebra.org/</u>		
Teaching Environment	\square Classroom \square laboratory \square Learning platform \square Other		

Meetings and Subjects Timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
	Explanation of the study plan for the course, and			Course
	what is expected to be accomplished by the			Syllabus
1	students.	Lecture		
	Technology Preliminaries:			Software
	Moodle. Microsoft Teams. Geogebra			~
2	BEFORE CALCULUS:	Lecture		Chapter 0
	0.1 Functions			
3	0.2 New Functions from Old	Lecture		Chapter 0
4	0.4 Inverse Functions; Inverse Trigonometric	Lecture	Ouiz	Chapter 0
	Functions	verse TrigonometricLectureQuizOarithmic FunctionsLectureONUITY: Approach)LectureO		
5	0.5 Exponential and Logarithmic Functions	Lecture		Chapter 0
	LIMITS AND CONTINUITY:	Ŧ.		
0	1.1 Limits (An Intuitive Approach)	Lecture		Chapter I
	1.2 Computing Limits			
-	1.5 Limits at Infinity; End Benavior of a Function	Terretorius	0	Classifier 1
/	1.5 Continuity	Lecture	Quiz	Chapter I
	THE DEDUXATIVE.			
	THE DERIVATIVE:			
o	2.1 Tangent Lines and Rates of Change	Lastura		Chanton 2
o	2.2 Introduction to Techniques of Differentiation	Lecture		Chapter 2
	2.5 Introduction to Techniques of Differentiation			
	2.5 Derivatives of Trigonometric Functions			
9	2.5 Derivatives of Trigonometric Punctions	Lecture		Chapter 2
	TOPICS IN DIFFERENTIATION.			
10	3.1 Implicit Differentiation	Lecture		Chapter 3
10	3.2 Derivatives of Logarithmic Functions	Lecture		Chapter 5
	3.3 Derivatives of Exp. and Inverse Trig			
11	Functions	Lecture		Chapter 3
**	3.6 L'Hopital's Rule; Indeterminate Forms	Locture		Shupter 5

12	THE DERIVATIVE IN GRAPHING AND APPLICATIONS:			
	4.1 Increase, Decrease, and Concavity 4.2 Relative Extrema: Graphing Polynomials	Lecture		Chapter 4
	4.4 Absolute Maxima and Minima			
	4.8 Rolle's Theorem; Mean-Value Theorem			
	INTEGRATION:			
13	5.2 The Indefinite Integral	Lecture	Quiz	Chapter 5
	5.3 Integration by Substitution			
	5.5 The Definite Integral			
14	5.6 The Fundamental Theorem of Calculus	Lecture		Chapter 5
	5.9 Evaluating Definite Integrals by Substitution			1
	5.10 Logarithmic and Other Functions Defined by			Chapter 5
15	Integrals	Lecture	Quiz	•
	6.1 Area Between Two Curves		-	Chapter 6
16	Final Exam			

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology			
• Use GeoGebra to draw functions and do calculations.			
Communication Skills			
• Making a GeoGebra applet that do calculations of any main topic of the course and			
represents it to the students in class.			
Application of Concepts Learnt			
• Choose a physical model of any main topic of the course and briefly solve it.			

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	8	K1, K2, C1
Various Assessments *	30%	Continuous	S1, S2, C1, C2
Final Exam	40%	16	K1, K2, K3, C1
Total	100%		

* Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**
	Knowledge		
K1	Understand the basic properties of algebraic and transcendental functions, and their operations.	Lecture	Exam
K2	Know the concepts of limits and continuity.	Lecture	Exam
К3	Understand the definition of derivative and integral, and how to differentiation and integration elementary functions.	Lecture	Exam

Skills				
S1	Students should be able to use derivatives and integrals to solve real-life problems involving optimization and areas.	Problem Solving	Homework	
S2	Use Mathematical Packages, like GeoGebra to solve problems.	Problem Solving	Computer Project	
	Competencies			
C1	Thinking reasonably and the ability to make decisions.	Discussion	Quiz	
C2	Work in a team to implement one of the tasks of the course.	Case study	Group project	

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning
** Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Policy	Policy Requirements			
Passing Grade	The minimum passing grade for the course is (50%) and the minimum			
	final mark recorded on transcript is (35%).			
	• Missing an exam without a valid excuse will result in a zero grade to			
	be assigned to the exam or assessment.			
Missing	• A Student who misses an exam or scheduled assessment, for a			
Exams	legitimate reason, must submit an official written excuse within a week from an exam or assessment due date			
	A student who has an avouse for missing a final avom should submit			
	• A student who has an excuse for missing a final exam should subline the excuse to the dean within three days of the missed exam date			
	The student is not allowed to be abcent more than (15%) of the total hours			
	The student is not anowed to be absent more than (15%) of the total nours			
	prescribed for the course, which equates to six fectures days (M, w) and			
	six lectures (S, 1). If the student misses more than (15%) of the total			
Attendance	hours prescribed for the course without a satisfactory excuse accepted by			
	the dean of the faculty, s/he will be prohibited from taking the final exam			
	and the grade in that course is considered (zero), but if the absence is due			
	to illness or a compulsive excuse accepted by the dean of the college,			
	then withdrawal grade will be recorded.			
	Philadelphia University pays special attention to the issue of academic			
A ao domio	integrity, and the penalties stipulated in the university's instructions are			
Honosty	applied to those who are proven to have committed an act that violates			
Honesty	academic integrity, such as: cheating, plagiarism (academic theft),			
	collusion, and violating intellectual property rights.			

Course Polices

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
К3	Understand the definition of derivative and integral, and how to differentiation and integration elementary functions.	Calculus 1	Quiz	100% of the students get 65% or more on the rubric.

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment			
K _p 1	The student will be given a polynomial on a closed interval and is asked to find the extremum and classify them, the intervals of increasing and decreasing, the intervals of concavity and inflection points, the area enclosed by the polynomial and the x –axis on the given interval.			

Assessment Rubric of the Program Learning Outcome

	Weak (1 pt.)	Not Bad (2 pts)	Good (3 pts)	Excellent (4 pts)
	Student is very confused and does not understand the topic, nor is able to clearly grasp how to apply it or when to use it.	Student has a decent grasp of the process but makes some major mistakes.	Student is almost perfect in their understanding of the topic, with some minor confusion or mistakes.	Student understands the concept perfectly.
Critical Numbers Student should find the critical numbers and determine the sign of 1 st derivative	The 1 st derivative calculated is wrong.	The 1 st derivative calculated is correct but the critical numbers wrong.	The critical numbers are found with minor mistakes.	The critical numbers are correctly found.
Intervals of increasing and decreasingStudent should find the intervals of increasing or decreasing.	The 1 st derivative sign is incorrect.	The 1 st derivative sign is calculated, and the intervals are found but with major errors.	The 1 st derivative sign is calculated, and the intervals are found but with minor errors.	The intervals of increasing and decreasing are calculated correctly.
Extremum Student should find the minimum and maximum values and classify them as local or absolute	The extremum points found are incorrect.	The extremum found correctly but their classification is wrong.	The extremum found with classification but with minor errors.	The extremum with their classification is correct.
Intervals of Concavity and Inflection Points Student should find the intervals of concavity, up or down, and find the inflection points.	The 2 nd derivative sign is incorrect.	The 2 nd derivative sign is calculated and the intervals with inflection points are found but with major errors.	The 2 nd derivative sign is calculated and the intervals with inflection points are found but with minor errors.	The intervals of concavity and inflection points are calculated correctly.
The Area Student should use the definite integral to calculate the area.	An inappropriate order of integration is used.	An appropriate order of integration is used but with major calculations errors.	An appropriate order of integration is used but with minor calculations errors.	An appropriate order of integration is used with correct calculations.