Philadelphia University	PHILADELPHIA	Approval date:
Faculty of Science	UNIVERSITY	Issue:
Department of Math	THE WAY TO THE FUTURE	Credit hours: 3
Academic year 2022/2023	Course Syllabus	Bachelor

Course information

Course#		Course title		Prere	equisite	
250372		Computer Aided Mathematics				DEs 0203
Course type		Class	time	Room #		
☐ University Requirement ☐ Faculty Requirement		SST 09:4	15 10.25	2827		
		331 09:4	10:33	2021		

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Feras Awad	822	2132	ST 13:00-14:00 MW 11:30-12:30	fawad@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method			
☐ Physical ☐ Online ☐ Blended			
Learning Model			
Duccontogo	Synchronous	Asynchronous	Physical
Precentage	0%	33%	67%

Course Description

What is Mathematica? The structure of Mathematica, Notebook interfaces, editing Cells and Text, Palettes. Mathematica as a Calculator: Basic Arithmetic, precedence, Built-in Constants: Built-in functions. Numerical Notation: prefix, postfix, infix forms for Built-in functions, Mathematica help. Variables and functions: Rules for Names, immediate Assignment, functions, substitution rule, anonymous functions. Lists: what is a list? Functions producing lists, working with elements of list, listable functions, useful functions. Logic and set theory: being logical, truth tables, element handling sets, Quantifiers. number theoretic functions, numerical functions, Fibonacci sequence, digits in Numbers, selecting from lists. Computer algebra: working with polynomials and powers. Working with rational functions, working with transcendental functions. Solving equations: equations and their solutions, inequalities, single variable calculus: function domain and range, limits, differentiation, implicit differentiation, Maximum and minimum, integration. Sums and products: sequences, the sum command, Taylor polynomials, the product command, vectors and matrices: vectors, Matrices, the conditional function if. Special types of matrices. Basic matrix operations, solving linear systems.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes		
	Knowledge			
K1	Understand the basic principles of the Wolfram Language.	K _p 1		
K2	Learn the use of commands and functions for solving and visualizing mathematical problems.	K_p3		
	Skills			
S1	Use Wolfram Language to solve problems graphically, numerically and analytically.	S _p 4		
C1	Thinking reasonably and the ability to make decisions.	C _p 1		
C2	Work in a team to implement one of the tasks of the course.	C_p2		

Learning Resources

Course textbook	• Feras Awad (2022) A Glimpse to Mathematica [Wolfram Language] (4 th ed.). Instructor Lectures and Notes.		
Supporting References	 Wellin, P. (2013) Programming with Mathematica: An Introduction (1st ed.). Cambridge University Press. Hastings, C., Mischo, K., Michael M. (2015) Hands-on start to Wolfram Mathematica (1st ed.). Champaign: Wolfram Media, Inc. 		
Supporting websites	WolframCloud: www.wolframcloud.com/		
Teaching Environment	□Classroom ⊠ laboratory ⊠Learning platform □Other		

Meetings and Subjects Timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
1	Explanation of the study plan for the course, and what is expected to be accomplished by the students. Introduction: What Is the Wolfram Language? Wolfram Cloud. What is Mathematica? The Structure of Mathematica. Common Kinds of Interfaces to Mathematica. Notebook Interfaces. Editing Cells and Text. Palettes	Lecture		Course Syllabus Chapter 1
2	Mathematica as a Calculator: Commands for Basic Arithmetic. Precedence. Built-in Constants. Built-in Functions. Numerical and Scientific Notations. Prefix and Postfix Forms for Built-in Functions. Mathematica Help	Lecture		Chapter 2
3	Variables and Functions: Rules for Names. Immediate Assignment. Functions. Substitution Rule.	Lecture		Chapter 3

4	Anonymous Functions. Functions with Conditions. Recursion	Lecture	Quiz	Chapter 3
5	Lists: What is a List? Functions Producing Lists. Displaying Lists. Working with Elements of a List. Pseudorandom Numbers.	Lecture		Chapter 4
6	Useful Functions. Listable Functions. Nested Loops.	Lecture	Quiz	Chapter 4
7	Vectors. Matrices. Special Types of Matrices. Basic Matrix Operations	Lecture		Chapter 4
8	Logic and Set Theory: Being Logical. Truth Tables. Element "€". Handling Sets. Quantifiers	Lecture	Midterm Exam	Chapter 5
9	Number Theory Primes. Integer Factorization. Digits in Numbers. Fibonacci Sequence.	Lecture		Chapter 6
10	Number Theoretic Functions. Selecting from Lists	Lecture		Chapter 6
11	Computer Algebra and Solving Equations Working with Polynomials and Powers. Working with Rational Functions. Working with Transcendental Functions.	Lecture	Quiz	Chapter 7
12	Equations and Their Solutions. Inequalities	Lecture		Chapter 7
13	Single Variable Calculus: Limits. Differentiation. Maximum and Minimum. Integration.	Lecture		Chapter 8
14	Sequences. Series. Taylor Polynomials	Lecture	Quiz	Chapter 8
15	Review	Lecture		
16	Final Exam			

^{*} Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology		
 Use Wolfram Language to solve mathematical problems. 		
Communication Skills		
• Choose a mathematical problem and present it to the students and explaining its solution		
method using Wolfram Language.		
Application of Concepts Learnt		
• Choose a famous math problem on YouTube and solve it using Wolfram Language.		

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	8	K1, K2
Various Assessments *	30%	Continuous	S1, C1, C2
Final Exam	40%	16	K1, K2
Total	100%		

^{*} Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**		
	Knowledge				
K1	Understand the basic principles of the Wolfram Language.	Lecture	Exam		
K2	Learn the use of commands and functions for solving and visualizing mathematical problems.	Lecture	Exam		
	Skills				
S1	Use Wolfram Language to solve problems graphically, numerically and analytically.	Lecture	Computer Assignment		
	Competencies				
C1	Thinking reasonably and the ability to make decisions.	Discussion	Quiz		
C2	Work in a team to implement one of the tasks of the course.	Project	Group Project		

^{*} Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Polices

Policy	Policy Requirements		
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final mark recorded on transcript is (35%).		
Missing Exams	 Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from an exam or assessment due date. A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date. 		
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and six lectures (S, T). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam and the grade in that course is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade		
Academic Honesty	applied to those who are proven to have committed an act that violate		

^{**} Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
S _p 4	The use of technology and software in the various fields of mathematics.	Computer Aided Mathematics	Project	100% of the students get 70% or more on the rubric

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment		
S _p 4	The student is given a problem, and use Wolfram Language to write a code that solves the problem.		

Assessment Rubric of the Program Learning Outcome

	Poor (1 pt.) Student is very confused and does not understand the topic, nor is able to clearly grasp how to apply it or when to use it.	Fair (2 pts) Student has a decent grasp of the process but makes some major mistakes.	Good (3 pts) Student is almost perfect in their understanding of the topic, with some minor confusion or mistakes.
Code Structure Structure of code, use of functions and procedures, code segmentation	Long code segments, improper usage of functions, functions with side effects.	Code structure needs work.	Code structure has perfectly followed guidelines. Short code segments, proper use of functions.
Code Reuse How well code reuse is implemented	Too much redundancy in code	Occasional code redundancy	No code redundancy
Correctness How correct is the output of the program	Program does not work correctly; output is wrong most of the time or there is no output.	Program works correctly in general in most areas but not in all areas.	Program works correctly in all areas and generates correct output.
Execution How smoothly does the program execute - are there any bugs	Program does not execute.	Program executes but crashes in some areas.	Program executes perfectly.