Philadelphia University

Faculty of Science

Department of Math

Academic year 2022/2023

THE WAY TO THE FUTURE **Course Syllabus**

Approval date:

Issue:

Credit hours: 3

PHILADELPHIA

UNIVERSITY

Bachelor

Course information

Course#		Course title		Prerequisite		
0250302		Calculus 4		Calculus 3 0250202		
Course type		Class	time	Room #		
□ University Requirement □		□ Faculty Req	uirement	MW 8:1	5 0.20	21004
🛛 Major Requirem	ent	□ Elective	\boxtimes Compulsory	IVI VV 0.1	13-9.30	21004

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Feras Awad	822	2132	ST 11:15–12:30 MW 09:45–11:00	fawad@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method			
☑ Physical □ Online □ Blended			
	Learning Model		
Ducconto ao	Synchronous	Asynchronous	Physical
Precentage	0%	0% 0%	

Course Description

Double Integrals. Double Integrals over Nonrectangular Region. Double Integrals in Polar Coordinates. Surface Area; Parametric Surfaces. Triple Integrals. Triple Integrals in Cylindrical and Spherical Coordinates. Change of Variables in Multiple Integrals, Jacobians. Vector Fields. Line Integrals. Independence of Path; Conservative Vector Fields. Green's Theorem. Surface Integrals. Applications of Surface Integrals; Flux. The Divergence Theorem. Stokes' Theorem.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes *
	Knowledge	
K1	Understand the basic ideas of scalar fields and vector fields.	K _p 1
K2	Recognize that a vector field is conservative or not.	K _p 1
К3	Understanding the line integral of a vector field and knowing how to compute the line integral over various types of paths.	K _p 1
K4	Know how and when to use Green's and Stoke's Theorems	K _p 1

Skills			
S1	Use computer software like GeoGebra to do calculations and graphs.	S _p 4	
	Competencies		
C1	Thinking reasonably and the ability to make decisions.	Cp1	
C2	Work in a team to implement one of the tasks of the course.	Cp2	

* According to learning outcomes of the faculty of pharmacy.

Learning Resources

Course textbook	Anton H., Bivens I., Davis S. (2011) Calculus: Early Transcendentals (10 th ed.). Wiley.		
Supporting References	• Colley S. (2012) Vector Calculus (4 th Edition). Pearson.		
Supporting websites	✓ GeoGebra: <u>https://www.geogebra.org/</u>		
Teaching Environment	\square Classroom \square laboratory \square Learning platform \square Other		

Meetings and Subjects Timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
	Explanation of the study plan for the course, and what is expected to be accomplished by the			Course Syllabus
1	students.	Lecture		
	Technology Preliminaries:			Software
	Moodle. Microsoft Teams. Geogebra			
2	MULTIPLE INTEGRALS: 14.1 Double Integrals	Lecture		Chapter 14
3	14.2 Double Integrals over Nonrectangular Regions	Lecture		Chapter 14
4	14.3 Double Integrals in Polar Coordinates	Lecture	Quiz	Chapter 14
5	14.4 Surface Area; Parametric Surfaces	Lecture		Chapter 14
6	14.5 Triple Integrals14.6 Triple Integrals in Cylindrical and SphericalCoordinates		Computer Task using GeoGebra	
7	14.7 Change of Variables in Multiple Integrals; Jacobians	Lecture		Chapter 14
8	TOPICS IN VECTOR CALCULUS: 15.1 Vector Fields			Chapter 14
9	15.2 Line Integrals	Lecture		Chapter 15
10	15.3 Independence of Path; Conservative Vector Fields	Lecture		Chapter 15
11	15.4 Green's Theorem		Quiz	
12	15.5 Surface Integrals	Lecture		Chapter 15
13	15.6 Applications of Surface Integrals; Flux	Lecture		Chapter 15
14	15.7 The Divergence Theorem	Lecture	Quiz	Chapter 15
15	15.8 Stokes' Theorem	Lecture		Chapter 15
16	Final Exam			

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology

• Use GeoGebra to draw curves and surfaces in space.

Communication Skills

• Making a GeoGebra applet that do calculations of any main topic of the course and represents it to the students in class.

Application of Concepts Learnt

• Recognize real life quantities that are scalar fields or vector fields such as the temperature of an object in space, the force, and the velocity

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	4	K1, K2, C1
Various Assessments *	30%	Continuous	S1, C1, C2
Final Exam	40%	8	K1, K2, K3, K4, C1
Total	100%		

* Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Number	Learning Outcomes	Learning Method*	Assessment Method**		
	Knowledge				
K1	Understand the basic ideas of scalar fields and vector fields.	Lecture	Exam		
K2	Recognize that a vector field is conservative or not.	Lecture	Exam		
К3	Understanding the line integral of a vector field and knowing how to compute the line integral over various types of paths.	Lecture	Exam		
K4	Know how and when to use Green's and Stoke's Theorems	Lecture	Exam		
	Skills				
S1	Use computer software like GeoGebra to do calculations and graphs.	Case study	Computer project		
	Competencies				
C1	Thinking reasonably and the ability to make decisions.	Discussion	Quiz		
C2	Work in a team to implement one of the tasks of the course.	Case study	Computer project		

Alignment of Course Outcomes with Learning and Assessment Methods

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning
 ** Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Course Polices

Policy	Policy Requirements		
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final mark recorded on transcript is (35%).		
Missing Exams	 Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from an exam or assessment due date. A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date. 		
Attendance	AttendanceThe student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and seven lectures (S, T, T). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by 		

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
K _p 1	The student has completed knowledge of the basic concepts, facts and theories in mathematics.	Calculus 4	Quiz	100% of the students get 60% or more on the rubric.

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
K _p 1	The student will be given a vector field \mathbf{F} and he/she will (a) Show that \mathbf{F} is a conservative vector field. (b) Find a potential function for \mathbf{F} . (c) Find the work performed by the force field on a particle that moves along a curve represented by parametric equations.

Assessment Rubric of the Program Learning Outcome

	Weak (1 pt.) Student is very confused and does not understand the topic, nor is able to clearly grasp how to apply it or when to use it.	Not Bad (2 pts) Student has a decent grasp of the process but makes some major mistakes.	Good (3 pts) Student is almost perfect in their understanding of the topic, with some minor confusion or mistakes.	Excellent (4 pts) Student understands the concept perfectly.
Conservative Field Student should proof that F is conservative.	Calculations are totally wrong.	Calculations were done with major errors.	Calculations were done with minor errors.	Calculations are complete and correct.
Potential Function Student should find the potential function for F.	Calculations are totally wrong.	Calculations were done with major errors.	Calculations were done with minor errors.	Calculations are complete and correct.
The Work Student should calculate the work performed by the force field on a particle that moves along curve.	Calculations are totally wrong.	Calculations were done with major errors.	Calculations were done with minor errors.	Calculations are complete and correct.