Philadelphia University

Faculty of Science

Department of Math

Academic year 2023/2024

Course Syllabus

PHILADELPHIA

UNIVERSITY THE WAY TO THE FUTURE

Bachelor

Issue:

Approval date:

Credit hours: 3

Course information

Course#	Course title		Prerequisite			
250313		Number Theory		Set Theory 250251		
Course type		Cla	ss time	Room #		
□ University Requirement □ Faculty Requirement		1 ST 08:1	15 – 09:30	21009		
🖾 Major Requirem	nent	\Box Elective	\boxtimes Compulsory	2 SM 09:4	45 – 11:15	21009

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Feras Awad	822	2132	ST 09:45-10:45	fawad@philadelphia.edu.jo
relas Awau	022	2132	SM 11:15-12:15	<u>lawad@pililadelpilia.edu.jo</u>

Course Delivery Method

Course Delivery Method			
☐ Physical ☐ Online ☐ Blended			
Learning Model			
Ducconto ao	Synchronous	Asynchronous	Physical
Precentage	0%	0%	100%

Course Description

This course provides an introduction to the fundamental concepts of number theory, exploring the properties and relationships of integers. Topics covered include divisibility, prime numbers, congruences, and arithmetic functions.

Prerequisites: Students should have a solid understanding of basic algebra and mathematical reasoning.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes
	Knowledge	
K1	Understand the fundamental concepts of divisibility theory and its applications in solving problems related to greatest common divisors and Euclidean algorithms.	K _p 1
K2	Identify prime numbers and their significance in number theory, including their role in the fundamental theorem of arithmetic and prime factorization.	K _p 1

К3	Explain congruences and their properties, including solving linear congruences and applying the Chinese Remainder Theorem.	K _p 1
K4	Describe arithmetic functions such as Euler's phi function and Mobius inversion formula, and apply them in number theoretic computations.	K _p 1
	Skills	
S1	Gain proficiency in algorithmic thinking through the application of algorithms like the Euclidean Algorithm and the Chinese Remainder Theorem.	S _p 2
S 2	Enhance logical reasoning skills in constructing mathematical proofs and making sound mathematical arguments.	S _p 1
	Competencies	
C1	Develop critical thinking and problem-solving skills by working on challenging number theory problems and applications.	C _p 1
C2	Collaborate with peers to solve problems and engage in group discussions and projects related to number theory.	Cp2

Learning Resources

Course textbook	Burton, D. (2017) Elementary Number Theory (7 th ed.). McGraw-Hill.
Supporting References	 Witno, A. (2017) Theory of Numbers (1st ed.). BookSurge Publishing. Rosen K. (2010). Elementary Number Theory and Its Applications (6th ed.). Pearson. Pommersheim J., Mrks T., Flapan E. (2010) Number Theory: A Lively Introduction with Proofs, Applications, and Stories (1st ed.). Wiley. Eynden, C. (2006) Elementary Number Theory (2nd ed.). Waveland Press Inc. Silverman, J. (2019) Friendly Introduction to Number Theory (4th ed.). Pearson.
Supporting websites	• Amin Witno: <u>http://www.witno.com/philadelphia/250313.htm</u>
Teaching Environment	⊠ Classroom □ laboratory □Learning platform □Other

Meetings and Subjects Timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
	Explanation of the study plan for the course, and			Course
	what is expected to be accomplished by the			Syllabus
1	students.	Lecture		
	Preliminaries			Chapter 1
	1.1 Mathematical Induction			-
2	Divisibility Theory in the Integers	T		Chapter 2
2	2.2 The Division Algorithm	Lecture		-
3	2.3 The Greatest Common Divisor	Lecture	Quiz 1	Chapter 2
4	2.4 The Euclidean Algorithm	Lecture		Chapter 2
5	2.5 The Diophantine Equation $ax + by = c$	Lecture		Chapter 2

6	Primes and Their Distribution 3.1 The Fundamental Theorem of Arithmetic	Lecture	Quiz 2	Chapter 3
7	3.2 The Sieve of Eratosthenes3.3 The Goldbach Conjecture	Lecture		Chapter 3
8	The Theory of Congruencies 4.2 Basic Properties of Congruence 4.3 Binary and Decimal Representations of Integers	Lecture	Midterm	Chapter 4
9	4.4 Linear Congruence and the Chinese Reminder Theorem	Lecture		Chapter 4
10	Fermat's Theorem 5.2 Fermat's Little Theorem and Pseudoprimes	Lecture		Chapter 5
11	5.3 Wilson's Theorem5.4 The Fermat-Kraitchik Factorization Method	Lecture	Quiz 3	Chapter 5
12	Number-Theoretic Functions 6.1 The Sum and Number of Divisors	Lecture		Chapter 6
13	6.2 The Mobius Inversion Formula	Lecture	Quiz 4	Chapter 6
14	Euler's Generalization of Fermat's Theorem 7.2 Euler's Phi Function	Lecture		Chapter 7
15	7.3 Euler's Theorem7.4 Some Properties of the Phi-Function	Lecture		Chapter 7
16	Final Exam			

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology

- Encourage students to use mathematical software (e.g., GeoGebra) to perform numerical calculations, simulate number theory concepts, and visualize results.
- Guide students in utilizing online resources, digital libraries, and academic databases to access relevant research articles, papers, and additional learning materials related to number theory.

Communication Skills

• Encourage students to engage in peer discussions, group work, and online forums to exchange ideas, collaborate, and articulate mathematical solutions effectively.

Application of Concepts Learnt

• Assign problem-solving projects that require students to apply number theory concepts to novel problems and situations, helping them develop problem-solving and critical thinking skills.

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	8	K1, K2
Various Assessments *	30%	Continuous	S1, S2, C1, C2
Final Exam	40%	16	K1, K2, K3, K4
Total	100%		

* Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**		
	Knowledge				
K1	Understand the fundamental concepts of divisibility theory and its applications in solving problems related to greatest common divisors and Euclidean algorithms.	Lecture	Exam		
К2	Identify prime numbers and their significance in number theory, including their role in the fundamental theorem of arithmetic and prime factorization.	Lecture	Exam		
К3	Explain congruences and their properties, including solving linear congruences and applying the Chinese Remainder Theorem.	Lecture	Exam		
K4	Describe arithmetic functions such as Euler's phi function and Mobius inversion formula, and apply them in number theoretic computations.	Lecture	Exam		
Skills					
S1	Gain proficiency in algorithmic thinking through the application of algorithms like the Euclidean Algorithm and the Chinese Remainder Theorem.	Project	Quiz		
S2	Enhance logical reasoning skills in constructing mathematical proofs and making sound mathematical arguments.	Problem Solving	Quiz		
Competencies					
C1	Develop critical thinking and problem-solving skills by working on challenging number theory problems and applications.	Problem Solving	Homework		
C2	Collaborate with peers to solve problems and engage in group discussions and projects related to number theory.	Project	Group Project		

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning
** Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Policy	Policy Requirements
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final mark recorded on transcript is (35%).
Missing Exams	 Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from an exam or assessment due date. A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date.
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and seven lectures (S, T, T). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam and the grade in that course is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade will be recorded.

Course Polices

Academic Honosty	Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as: cheating, plagiarism (academic theft), collusion, and violating intellectual property rights.
---------------------	--

D I	r •	\mathbf{O}	1		11.0	
Program 1	Learning	Outcomes t	o be A	Assessed 1	n this Co	ourse

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
K _p 2	The ability to write proofs in logical sequence and mastery of different methods of proofs.	Number Theory	Quiz	100% of the students get 80% or more on the rubric

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment				
K _p 2	Each student will choose one proposition or theorem from a list of predefined statements related to number theory. The list will include propositions of varying complexity to accommodate students of different skill levels.				

Assessment Rubric of the Program Learning Outcome

	Excellent (4 pts)	Good (3 pts)	Fair (2 pts)	Poor (1 pt.)	
	Student understands the concept perfectly.	Student is almost perfect in their understanding of the topic, with some minor confusion or mistakes.	Student has a decent grasp of the process but makes some major mistakes.	Student is very confused and does not understand the topic, nor is able to clearly grasp how to apply it or when to use it.	
Logical Structure and Organization	Demonstrates a highly logical and well-organized proof with a clear and effective sequence.	Provides a logically structured proof with a mostly clear sequence.	Offers a somewhat organized proof with occasional lapses in logical sequence.	Presents a disorganized or disjointed proof.	
Correct Application of Proof Methods	Correctly and skillfully applies various proof methods relevant to the chosen proposition.	Accurately applies proof methods with some minor errors.	Demonstrates limited mastery of proof methods, leading to noticeable errors.	Inadequately applies proof methods, resulting in significant errors.	
Mathematical Writing	Demonstrates impeccable mathematical writing, free from errors, and adheres to conventions consistently.	Displays proficient mathematical writing with only minor errors or occasional deviations from conventions.	Exhibits some issues with mathematical writing, including errors and deviations from conventions.	Contains numerous errors and significant deviations from mathematical writing conventions.	