Philadelphia University	PHILADELPHIA UNIVERSITY THE WAY TO THE FUTURE	Approval date:
Faculty of Science		Issue:
Department of Math		Credit hours: 3
Academic year 2023/2024	Course Syllabus	Bachelor

Course information

Course\#	Course title			Prerequisite
250372	Computer Aided Mathematics			$\begin{gathered} \hline \text { ODEs } \\ 250203 \\ \hline \end{gathered}$
Course type			Class time	Room \#
University Requirement \boxtimes Major Requirement	\square Faculty R	rement	1 ST 11:15-12:05	2827
	\square Elective	\boxtimes Compulsory	2 SM 14:15-15:05	2827

Instructor Information

Name	Office No.	Phone No.	Office Hours		E-mail		
Feras Awad	822	2132	ST 09:45-10:45 SM	11:15-12:15		fawad@philadelphia.edu.jo	年
:---							

Course Delivery Method

Course Delivery Method			
\square Physical	\square Online		
Learning Model			
Precentage Blended			
	Synchronous	Asynchronous	Physical
	$\mathbf{0 \%}$	$\mathbf{3 3 \%}$	$\mathbf{6 7 \%}$

Course Description

The structure of Mathematica. Mathematica as a Calculator. Variables and functions. Lists. Logic and set theory. Number Theory. Computer algebra and Solving Equations. Single Variable Calculus.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes
Knowledge		
K1	Understand the basic principles of the Wolfram Language.	$\mathrm{K}_{\mathrm{p}} 1$
K2	Learn the use of commands and functions for solving and visualizing mathematical problems.	$\mathrm{K}_{\mathrm{p}} 3$
Skills		
S1	Use Wolfram Language to solve problems graphically, numerically and analytically.	Sp4
Competencies		
C1	Thinking reasonably and the ability to make decisions.	$\mathrm{C}_{\mathrm{p}} 1$
C2	Work in a team to implement one of the tasks of the course.	$\mathrm{C}_{\mathrm{p}} 2$

Learning Resources

| Course textbook | \bulletFeras Awad (21/02/2024) A Glimpse to Mathematica [Wolfram
 Language]. Instructor Lectures and Notes. |
| :--- | :--- | :--- |
| Supporting References | \bulletWellin, P. (2013) Programming with Mathematica: An
 Introduction (1 ${ }^{\text {st }}$ ed.). Cambridge University Press. |
| | Hastings, C., Mischo, K., Michael M. (2015) Hands-on start to
 Wolfram Mathematica (1 $1^{\text {st }}$ ed.). Champaign: Wolfram Media,
 Inc. |
| Supporting websites | WolframCloud: www.wolframcloud.com/ |
| Teaching Environment | \square Classroom \boxtimes laboratory 区Learning platform \square Other |

Meetings and Subjects Timetable

Week	Topic	Learning Methods	Tasks	Learning Material
$\mathbf{1}$	Explanation of the study plan for the course, and what is expected to be accomplished by the students. Introduction: What Is the Wolfram Language? Wolfram Cloud. What is Mathematica? The Structure of Mathematica. Common Kinds of Interfaces to Mathematica. Notebook Interfaces. Palettes	Lecture		

12	Equations and Their Solutions. Inequalities	Lecture		Chapter 7
13	Single Variable Calculus: Limits. Differentiation. Implicit Differentiation. Maximum and Minimum. Integration.	Lecture	Quiz 4	Chapter 8
14	Sequences. Series. Taylor Polynomials	Lecture		Chapter 8
15	Review	Lecture		
16	Final Exam			

* Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology

- Use Wolfram Language to solve mathematical problems.

Communication Skills

- Choose a mathematical problem and present it to the students and explaining its solution method using Wolfram Language.

Application of Concepts Learnt

- Choose a famous math problem on YouTube and solve it using Wolfram Language.

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	$\mathbf{3 0 \%}$	$\mathbf{8}$	K1, K2
Various Assessments *	$\mathbf{3 0 \%}$	Continuous	S1, C1, C2
Final Exam	$\mathbf{4 0 \%}$	$\mathbf{1 6}$	K1, K2
Total	$\mathbf{1 0 0 \%}$		

* Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**
Knowledge			
K1	Understand the basic principles of the Wolfram Language.	Lecture	Exam
K2	Learn the use of commands and functions for solving and visualizing mathematical problems.	Lecture	Exam
Skills			
S1	Use Wolfram Language to solve problems graphically, numerically and analytically.	Lecture	Computer Assignment
Competencies			
C1	Thinking reasonably and the ability to make decisions.	Discussion	Quiz
C2	Work in a team to implement one of the tasks of the course.	Project	Group Project

[^0]Course Polices

Policy	Policy Requirements
Passing Grade	The minimum passing grade for the course is (50\%) and the minimum final mark recorded on transcript is (35\%).
Missing Exams	Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment.
A Student who misses an exam or scheduled assessment, for a	
legitimate reason, must submit an official written excuse within a	
week from an exam or assessment due date.	
A student who has an excuse for missing a final exam should submit	
the excuse to the dean within three days of the missed exam date.	

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
$\mathbf{S}_{\mathbf{p}} \mathbf{4}$	The use of technology and software in the various fields of mathematics.	Computer Aided Mathematics	Project	100% of the students get 70% or more on the rubric

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
$\mathbf{S}_{\mathbf{p}} \mathbf{4}$	The student is given a problem, and use Wolfram Language to write a code that solves the problem.

Assessment Rubric of the Program Learning Outcome

	Poor (1 pt.) Student is very confused and does not understand the topic, nor is able to clearly grasp how to apply it or when to use it.	Fair (2 pts) Student has a decent grasp of the process but makes some major mistakes.	Good (3 pts) Student is almost perfect in their understanding of the topic, with some minor confusion or mistakes.
Code Structure Structure of code, use of functions and procedures, code segmentation	Long code segments, improper usage of functions, functions with side effects.	Code structure needs work.	Code structure has perfectly followed guidelines. Short code segments, proper use of functions.
Code Reuse How well code reuse is implemented	Too much redundancy in code	Occasional code redundancy	No code redundancy
Correctness How correct is the output of the program	Program does not work correctly; output is wrong most of the time or there is no output.	Program works correctly in general in most areas but not in all areas.	Program works correctly in all areas and generates correct output.
Execution How smoothly does the program execute - are there any bugs	Program does not execute.	Program executes but crashes in some areas.	Program executes perfectly.

[^0]: * Includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning
 ** Includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

